Skip to main content
Log in

Efficient generation of nanoscale arrays of nitrogen-vacancy centers with long coherence time in diamond

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Utilizing PMMA mask, nanoscale arrays of nitrogen-vacancy (NV) centers in diamond have been fabricated by ion beam implantation (IBM). Long coherence time of the spin of NV centers, comparable with that of the native NV centers in CVD grown diamond, has been achieved by high-temperature annealing. With dynamic decoupling technology, coherence time was extended to 1.4 millisecond, which enable an ac magnetic field detection with a sensitivity of \(80\,nT\cdot Hz^{-1/2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C.V. Borczyskowski, Science 276(5321), 2012 (1997). doi:10.1126/science.276.5321.2012.http://www.sciencemag.org/content/276/5321/2012

  2. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, J. Wrachtrup, Phys. Rev. Lett. 92(7), 076401 (2004). doi:10.1103/PhysRevLett.92.076401

    Article  ADS  Google Scholar 

  3. C. Kurtsiefer, S. Mayer, P. Zarda, H. Weinfurter, Phys. Rev. Lett. 85(2), 290 (2000). doi:10.1103/PhysRevLett.85.290.http://link.aps.org/doi/10.1103/PhysRevLett.85.290

  4. P. Brooke, Phys. Rev. A 75(2), 022320 (2007). doi:10.1103/PhysRevA.75.022320

    Article  ADS  Google Scholar 

  5. M.V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, M.D. Lukin, Science 316(5829), 1312 (2007). doi:10.1126/science.1139831.http://www.ncbi.nlm.nih.gov/pubmed/17540898

  6. L. Jiang, J.S. Hodges, J.R. Maze, P. Maurer, J.M. Taylor, D.G. Cory, P.R. Hemmer, R.L. Walsworth, A. Yacoby, A.S. Zibrov, M.D. Lukin, Science 326(5950), 267 (2009). doi:10.1126/science.1176496. http://www.ncbi.nlm.nih.gov/pubmed/19745117

  7. P. Neumann, R. Kolesov, B. Naydenov, J. Beck, F. Rempp, M. Steiner, V. Jacques, G. Balasubramanian, M.L. Markham, D.J. Twitchen, S. Pezzagna, J. Meijer, J. Twamley, F. Jelezko, J. Wrachtrup, Nat. Phys. 6(4), 249 (2010). doi:10.1038/nphys1536

    Article  Google Scholar 

  8. F. Dolde, I. Jakobi, B. Naydenov, N. Zhao, S. Pezzagna, C. Trautmann, J. Meijer, P. Neumann, F. Jelezko, J. Wrachtrup, Nat. Phys. 9(3), 139 (2013). doi:10.1038/nphys2545

    Article  Google Scholar 

  9. W. Pfaff, B.J. Hensen, H. Bernien, S.B.v. Dam, M.S. Blok, T.H. Taminiau, M.J. Tiggelman, R.N. Schouten, M. Markham, D.J. Twitchen, R. Hanson, Science 345(6196), 532 (2014). doi:10.1126/science.1253512. http://www.sciencemag.org/content/345/6196/532

  10. G. Balasubramanian, I.Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler, C. Shin, C. Kim, A. Wojcik, P.R. Hemmer, A. Krueger, T. Hanke, A. Leitenstorfer, R. Bratschitsch, F. Jelezko, J. Wrachtrup, Nature 455(7213), 648 (2008). doi:10.1038/nature07278.http://www.ncbi.nlm.nih.gov/pubmed/18833276

  11. C.L. Degen, Appl. Phys. Lett. 92(24), 243111 (2008). doi:10.1063/1.2943282

    Article  ADS  Google Scholar 

  12. B. Grotz, J. Beck, P. Neumann, B. Naydenov, R. Reuter, F. Reinhard, F. Jelezko, J. Wrachtrup, D. Schweinfurth, B. Sarkar, P. Hemmer, New J. Phys. 13(5), 055004 (2011). doi:10.1088/1367-2630/13/5/055004

    Article  ADS  Google Scholar 

  13. F. Dolde, H. Fedder, M.W. Doherty, T. Nöbauer, F. Rempp, G. Balasubramanian, T. Wolf, F. Reinhard, L.C.L. Hollenberg, F. Jelezko, J. Wrachtrup, Nat. Phys. 7(6), 459 (2011). doi:10.1038/nphys1969

    Article  Google Scholar 

  14. G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin, Nature 500(7460), 54 (2013). doi:10.1038/nature12373.http://www.ncbi.nlm.nih.gov/pubmed/23903748

  15. T.A. Kennedy, J.S. Colton, J.E. Butler, R.C. Linares, P.J. Doering, Appl. Phys. Lett. 83(20), 4190 (2003). doi:10.1063/1.1626791

    Article  ADS  Google Scholar 

  16. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P.R. Hemmer, F. Jelezko, J. Wrachtrup, Nat. Mater. 8(5), 383 (2009). doi:10.1038/nmat2420.http://www.ncbi.nlm.nih.gov/pubmed/19349970

  17. G. Davies, M.F. Hamer, Proceedings of the royal society A: mathematical, physical and engineering sciences 348(1653), 285 (1976). doi:10.1098/rspa.1976.0039

  18. F.C. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z.Y. Wang, D. Jaksch, R.A. Taylor, I.A. Walmsley, M. Draganski, P. Reichart, A.D. Greentree, D.N. Jamieson, S. Prawer, Diam. Relat. Mater. 16, 1887 (2007)

    Article  ADS  Google Scholar 

  19. C. Santori, P.E. Barclay, K.M.C. Fu, R.G. Beausoleil, Phys. Rev. B 79, 125313 (2009)

    Article  ADS  Google Scholar 

  20. J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, J. Wrachtrup, Appl. Phys. Lett. 87, 261909 (2005)

    Article  ADS  Google Scholar 

  21. N.Y. Yao, L. Jiang, A.V. Gorshkov, P.C. Maurer, G. Giedke, J.I. Cirac, M.D. Lukin, Nat. Commun. 3, 800 (2012). doi:10.1038/ncomms1788

    Article  ADS  Google Scholar 

  22. A.D. Greentree, B.A. Fairchild, F.M. Hossain, S. Prawer, Mater. Today 11(9), 22 (2008). doi:10.1016/s1369-7021(08)70176-7

    Article  Google Scholar 

  23. J. Meijer, S. Pezzagna, T. Vogel, B. Burchard, H.H. Bukow, I.W. Rangelow, Y. Sarov, H. Wiggers, I. Plümel, F. Jelezko, J. Wrachtrup, F. Schmidt-Kaler, W. Schnitzler, K. Singer, Appl. Phys. A 91(4), 567 (2008). doi:10.1007/s00339-008-4515-1.http://link.springer.com/article/10.1007/s00339-008-4515-1

  24. S. Pezzagna, D. Wildanger, P. Mazarov, A.D. Wieck, Y. Sarov, I. Rangelow, B. Naydenov, F. Jelezko, S.W. Hell, J. Meijer, Small 6(19), 2117 (2010).doi:10.1002/smll.201000902. http://doi.wiley.com/10.1002/smll.201000902

  25. D.M. Toyli, C.D. Weis, G.D. Fuchs, T. Schenkel, D.D. Awschalom, Nano Lett. 10(8), 3168 (2010). doi:10.1021/nl102066q

    Article  ADS  Google Scholar 

  26. S. Pezzagna, D. Rogalla, H.W. Becker, I. Jakobi, F. Dolde, B. Naydenov, J. Wrachtrup, F. Jelezko, C. Trautmann, J. Meijer, Phys. Status Solidi A 208, 2017 (2011)

    Article  ADS  Google Scholar 

  27. S. Sangtawesin, T.O. Brundage, Z.J. Atkins, J.R. Petta, Appl. Phys. Lett. 105(6), 063107 (2014). doi:10.1063/1.4892971.http://scitation.aip.org/content/aip/journal/apl/105/6/10.1063/1.4892971

  28. J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song, G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, G. Wang, Phys. Rev. B 91(15), 155404 (2015). doi:10.1103/PhysRevB.91.155404. http://link.aps.org/doi/10.1103/PhysRevB.91.155404

  29. T. Yamamoto, T. Umeda, K. Watanabe, S. Onoda, M.L. Markham, D.J. Twitchen, B. Naydenov, L.P. McGuinness, T. Teraji, S. Koizumi, F. Dolde, H. Fedder, J. Honert, J. Wrachtrup, T. Ohshima, F. Jelezko, J. Isoya, Phys. Rev. B 88(7), 075206 (2013).doi:10.1103/PhysRevB.88.075206. http://link.aps.org/doi/10.1103/PhysRevB.88.075206

  30. B. Naydenov, F. Reinhard, A. Lämmle, V. Richter, R. Kalish, U.F.S. D’Haenens-Johansson, M. Newton, F. Jelezko, J. Wrachtrup, Appl. Phys. Lett. 97(24), 242511 (2010). doi:10.1063/1.3527975.http://scitation.aip.org/content/aip/journal/apl/97/24/10.1063/1.3527975

  31. S. Pezzagna, J. Meijer, in Ion Implantation, ed. by M. Goorsky (InTech, 2012), pp. 1–24. http://www.intechopen.com/books/ion-implantation/high-resolution-ion-implantation-from-kev-to-mev

  32. J. Nakata, Phys. Rev. B 60(4), 2747 (1999). http://prb.aps.org/abstract/PRB/v60/i4/p2747_1

  33. J. Wang, W. Zhang, J. Zhang, J. You, Y. Li, G. Guo, F. Feng, X. Song, L. Lou, W. Zhu, G. Wang, Nanoscale 8(10), 5780 (2016). doi:10.1039/C5NR08690F. http://pubs.rsc.org/en/content/articlelanding/2016/nr/c5nr08690f

  34. S. Osswald, G. Yushin, V. Mochalin, S.O. Kucheyev, Y. Gogotsi, J. Am. Chem. Soc. 128(35), 11635 (2006). doi:10.1021/ja063303n. http://www.ncbi.nlm.nih.gov/pubmed/16939289

  35. K.M.C. Fu, C. Santori, P.E. Barclay, R.G. Beausoleil, Appl. Phys. Lett. 96(12), 121907 (2010). doi:10.1063/1.3364135. http://scitation.aip.org/content/aip/journal/apl/96/12/10.1063/1.3364135

  36. X. Liu, G. Wang, X. Song, F. Feng, W. Zhu, L. Lou, J. Wang, H. Wang, P. Bao, Appl. Phys. Lett. 101(23), 233112 (2012). doi:10.1063/1.4769367

    Article  ADS  Google Scholar 

  37. S. Pezzagna, B. Naydenov, F. Jelezko, J. Wrachtrup, J. Meijer, New J. Phys. 12(6), 065017 (2010). doi:10.1088/1367-2630/12/6/065017. http://iopscience.iop.org/1367-2630/12/6/065017

  38. P. Spinicelli, A. Dréau, L. Rondin, F. Silva, J. Achard, S. Xavier, S. Bansropun, T. Debuisschert, S. Pezzagna, J. Meijer, V. Jacques, J.F. Roch, New J. Phys. 13(2), 025014 (2011). doi:10.1088/1367-2630/13/2/025014. http://iopscience.iop.org/1367-2630/13/2/025014

  39. J. Schwartz, S. Aloni, D.F. Ogletree, T. Schenkel, New J. Phys. 14(4), 043024 (2012). doi:10.1088/1367-2630/14/4/043024. http://stacks.iop.org/1367-2630/14/i=4/a=043024?key=crossref.71fee087a33f4c3af8ee73da7e6f3e80

  40. D. Antonov, T. Häußermann, A. Aird, J. Roth, H.R. Trebin, C. Müller, L. McGuinness, F. Jelezko, T. Yamamoto, J. Isoya, S. Pezzagna, J. Meijer, J. Wrachtrup, Appl. Phys. Lett. 104(1), 012105 (2014). doi:10.1063/1.4860997. http://scitation.aip.org/content/aip/journal/apl/104/1/10.1063/1.4860997

  41. B. Naydenov, V. Richter, J. Beck, M. Steiner, P. Neumann, G. Balasubramanian, J. Achard, F. Jelezko, J. Wrachtrup, R. Kalish, Appl. Phys. Lett. 96(16), 163108 (2010). doi:10.1063/1.3409221.00040

    Article  ADS  Google Scholar 

  42. xxxx

  43. C.A. Ryan, J.S. Hodges, D.G. Cory, Phys. Rev. Lett. 105(20), 200402 (2010). doi:10.1103/PhysRevLett.105.200402

    Article  ADS  Google Scholar 

  44. L. Childress, M.V. Gurudev Dutt, J.M. Taylor, A.S. Zibrov, F. Jelezko, J. Wrachtrup, P.R. Hemmer, M.D. Lukin, Science 314(5797), 281 (2006). doi:10.1126/science.1131871. http://www.ncbi.nlm.nih.gov/pubmed/16973839

  45. B.K. Ofori-Okai, S. Pezzagna, K. Chang, M. Loretz, R. Schirhagl, Y. Tao, B.A. Moores, K. Groot-Berning, J. Meijer, C.L. Degen, Phys. Rev. B 86(8), 081406 (2012). doi:10.1103/PhysRevB.86.081406. http://link.aps.org/doi/10.1103/PhysRevB.86.081406

  46. A.J. Häußler, P. Heller, L.P. McGuinness, B. Naydenov, F. Jelezko, Opt. Express 22(24), 29986 (2014). doi:10.1364/OE.22.029986. http://www.opticsinfobase.org/oe/fulltext.cfm?uri=oe-22-24-29986&id=304916

  47. M. Markham, J. Dodson, G. Scarsbrook, D. Twitchen, G. Balasubramanian, F. Jelezko, J. Wrachtrup, Diam. Relat. Mater. 20(2), 134 (2010). doi:10.1016/j.diamond.2010.11.016. http://linkinghub.elsevier.com/retrieve/pii/S0925963510003274

  48. J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, M.D. Lukin, Nat. Phys. 4(10), 810 (2008). doi:10.1038/nphys1075

    Article  Google Scholar 

  49. J. Maze, J. Taylor, M. Lukin, Phys. Rev. B 78(9), 094303 (2008). doi:10.1103/PhysRevB.78.094303

    Article  ADS  Google Scholar 

  50. J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi, G. Fitch, D.G. Cory, Y. Nakamura, J.S. Tsai, W.D. Oliver, Nat. Phys. 7(7), 565 (2011). doi:10.1038/nphys1994

    Article  Google Scholar 

  51. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V. Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, M.D. Lukin, Nature 455(7213), 644 (2008). doi:10.1038/nature07279. http://www.ncbi.nlm.nih.gov/pubmed/18833275

  52. G. de Lange, T. van der Sar, M. Blok, Z.H. Wang, V. Dobrovitski, R. Hanson, Sci. Rep. 2, 382 (2012). doi:10.1038/srep00382. http://www.ncbi.nlm.nih.gov/pubmed/22536480

Download references

Acknowledgments

The authors would like to thank Jihong Chen, Zhongcheng Zheng, Liping Guo, Guoping Guo, Lele Fan, Chongwen Zou for their help in making the sample. This work was supported by the National Basic Research Program of China (2013CB921800, 2011CB921400) and the Natural Science Foundation of China (Grants No. 11374280 and No. 50772110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanzhong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, F., Wang, J., Zhang, W. et al. Efficient generation of nanoscale arrays of nitrogen-vacancy centers with long coherence time in diamond. Appl. Phys. A 122, 944 (2016). https://doi.org/10.1007/s00339-016-0445-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0445-5

Keywords

Navigation