Skip to main content
Log in

Investigation of the pore geometrical structure of nanofibrous membranes using statistical modelling

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The pore size and its distribution are the two main geometrical properties of nanofibrous membranes in various applications such as filtration and tissue engineering. In the current paper, a modified approach (model) is suggested to predict pore size and its distribution in nanofibrous membranes. In the present work, inter-fibre pores are considered as polygons arising from the fibre contacts. For the first time, these polygons are assumed to be three-, four- and five-gons, and the hydraulic radius of the pores was obtained instead of the equal radius. The pore size of multilayer mats was provided with a different insight. The pore mean size and its distribution were obtained by statistical methods. In order to validate the model, polycaprolactone (PCL) nanofibrous mats were electrospun, and the mean pore size and its distribution were measured using porosimetry. It was found that the probability distribution function of the pore size in both single and multi nanofibrous layers was the Gamma function with two parameters. The effect of the fibre width and porosity raise was increasing of mean pore diameter of multilayer networks. A comparison between the modified model and previous models revealed that the modified approach was more realistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Aluigi, A. Varesano, A. Montarsolo, C. Vineis, F. Ferrero, G. Mazzuchetti et al., J. Appl. Polym. Sci. 104, 863 (2007)

    Article  Google Scholar 

  2. M.M. Hohman, M. Shin, G. Rutledge, M.P. Brenner, Phys. Fluids 13, 2201 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  3. G. Rutledge, Phys. Fluids 13, 2221 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  4. X. Shan, F. Li, C. Liu, Q. Gao, J. Appl. Polym. Sci. 131, 41098 (2014)

    Article  Google Scholar 

  5. N. Charernsriwilaiwat, P. Opanasopit, T. Rojanarata, T. Ngawhirunpat, P. Supaphol, Carbohydr. Polym. 81, 675 (2010)

    Article  Google Scholar 

  6. S.J. Eichhorn, W.W. Sampson, J. R. Soc. Interface 2, 309 (2005)

    Article  Google Scholar 

  7. S. Borhani, S.A. Hosseini, S.G. Etemad, J. Militký, J. Appl. Polym. Sci. 108, 2994 (2008)

    Article  Google Scholar 

  8. C. Dodson, W. Sampson, J. Pulp Pap. Sci. 22, J165 (1996)

    Google Scholar 

  9. W.W. Sampson, Modelling Stochastic Fibrous Materials with Mathematica ® (Springer, Berlin, 2008)

    MATH  Google Scholar 

  10. W.J. Li, C.T. Laurencin, E.J. Caterson, R.S. Tuan, F.K. Ko, J. Biomed. Mater. Res. 60, 613 (2002)

    Article  Google Scholar 

  11. Q. Zhang, J. Welch, H. Park, C.-Y. Wu, W. Sigmund, J.C. Marijnissen, J. Aerosol. Sci. 41, 230 (2010)

    Article  Google Scholar 

  12. K. Jong-Sang, D.H. Reneker, Polym. Compos. 20, 124 (1999)

    Article  Google Scholar 

  13. C. Zhu, X. Mu, P.A. van Aken, Y. Yu, J. Maier, Angew. Chem. Int. Ed. 53, 2152 (2014)

    Article  Google Scholar 

  14. P. Gibson, H. Schreuder-Gibson, R. Stote, M. Roylance, M. Nakagawa, C. Capone, J. Eng. Fiber Fabr. 3, 19 (2008)

    Google Scholar 

  15. R. Yang, K.B. Aubrecht, H. Ma, R. Wang, R.B. Grubbs, B.S. Hsiao et al., Polymer 55, 1167 (2014)

    Article  Google Scholar 

  16. K. Yoon, K. Kim, X. Wang, D. Fang, B.S. Hsiao, B. Chu, Polymer 47, 2434 (2006)

    Article  Google Scholar 

  17. A.E. Scheidegger, Soil Sci. 86, 355 (1958)

    Article  Google Scholar 

  18. T. Komori, M. Itoh, Text. Res. J. 64, 519 (1994)

    Article  Google Scholar 

  19. R. Bagherzadeh, M. Latifi, S.S. Najar, L. Kong, J. Biomed. Mater. Res. Part A 101, 765 (2013)

    Article  Google Scholar 

  20. R. Bagherzadeh, S.S. Najar, M. Latifi, L. Kong, J. Biomed. Mater. Res. Part A 101, 2107 (2013)

    Article  Google Scholar 

  21. N. Pan, Text. Res. J. 63, 336 (1993)

    Article  Google Scholar 

  22. N. Pan, J.-H. He, J. Yu, Text. Res. J. 77, 205 (2007)

    Article  Google Scholar 

  23. W. Sampson, J. Mater. Sci. 38, 1617 (2003)

    Article  ADS  Google Scholar 

  24. W. Sampson, J. Mater. Sci. 39, 2775 (2004)

    Article  ADS  Google Scholar 

  25. T. Komori, K. Makishima, Text. Res. J. 47, 13 (1977)

    Google Scholar 

  26. E. Schweers, F. Löffler, Powder Technol. 80, 191 (1994)

    Article  Google Scholar 

  27. W. Sampson, J. Mater. Sci. 36, 5131 (2001)

    Article  ADS  Google Scholar 

  28. R. Bagherzadeh, S.S. Najar, M. Latifi, L. Kong, Text. Res. J. 82, 70 (2012)

    Article  Google Scholar 

  29. A. Hosseini, S. Ravandi, N. Pan, Curr. Nanosci. 7, 415 (2011)

    Article  ADS  Google Scholar 

  30. Q. Wang, B. Maze, H.V. Tafreshi, B. Pourdeyhimi, Chem. Eng. Sci. 61, 4871 (2006)

    Article  Google Scholar 

  31. S. Eichhorn, W. Sampson, J. R. Soc. Interface 7, 641 (2010)

    Article  Google Scholar 

  32. H. Corte, E. Lloyd, Fluid flow through paper and sheet structure. in Consolidation of the Paper Web Trans IIIrd Fund Res Symposium, pp. 981–1009 (1965)

  33. S.M. Ross, Stochastic Processes (Wiley, New York, 1996)

    MATH  Google Scholar 

  34. O. Kallmes, H. Corte, Tappi J. 43, 737 (1960)

    Google Scholar 

  35. F.A. Haight, Handbook of the poisson distribution (1967)

  36. C. Dodson, W. Sampson, J. Stat. Phys. 96, 447 (1999)

    Article  ADS  Google Scholar 

  37. W. Feller, An Introduction to Probability Theory and Its Applications (Wiley, Hoboken, 2008)

    MATH  Google Scholar 

  38. R.L. Plackett, Int. Stat. Rev. Rev. Int. Stat. 51, 59 (1983)

    Article  MathSciNet  Google Scholar 

  39. C. Dodson, W. Sampson, Appl. Math. Lett. 10, 87 (1997)

    Article  Google Scholar 

  40. Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Abdolkarim Hosseini Ravandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanmohammadi Khoshui, S., Hosseini Ravandi, S.A., Bagherzadeh, R. et al. Investigation of the pore geometrical structure of nanofibrous membranes using statistical modelling. Appl. Phys. A 122, 914 (2016). https://doi.org/10.1007/s00339-016-0439-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0439-3

Keywords

Navigation