Skip to main content
Log in

Optical and electrical properties of hydrothermally prepared CdTe nanowires

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The hydrothermal process was used to synthesize CdTe nanowires (NWs). Various analytical techniques were used to characterize the obtained NWs. The wire diameters were in the range 35–60 nm, and the lengths were >5 μm. The CdTe NWs had zinc-blende crystal structure. The NWs had high uniformity and high yield. FTIR analysis revealed the presence of the characteristic vibrational spectra of oxygen and hydrogen bounded to Cd and Te in CdTe NWs. The optical band gap value was 2.09 eV. The CdTe NWs showed a strong red emission band centered around 620.3 nm. The conductivity measurements were carried out in the temperature range 300–500 K and in air atmosphere. Two types of conduction mechanisms were observed with activation energies of 0.27 and 0.17 eV at high and low temperature regions, respectively. These results validate the potential of CdTe NWs for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Mitchell, A.L. Fahrenbruch, R.H. Bube, J. Appl. Phys. 48, 829 (1977)

    Article  ADS  Google Scholar 

  2. W.P.R. Liyanage, J.S. Wilson, E.C. Kinzel, B.K. Durant, M. Nath, Sol. Energy Mater. Sol. Cells 133, 260 (2015)

    Article  Google Scholar 

  3. X. Li, X. Yang, L. Yuwen, W. Yang, L. Weng, Z. Teng, L. Wang, Biomaterials (2016). doi:10.1016/j.biomaterials.2016.04.014. (in press)

    Google Scholar 

  4. S. Ebrahim, M. Reda, A. Hussien, D. Zayed, Spectrochim. Acta A 150, 212 (2015)

    Article  Google Scholar 

  5. S. Chander, M.S. Dhaka, Phys. E 76, 52 (2016)

    Article  Google Scholar 

  6. A.L. Rogach, L. Katsikas, A. Kornowski, D.S. Su, A. Eychmuller, H. Weller, Ber. Bunsenges. Phys. Chem. 100, 1772 (1996)

    Article  Google Scholar 

  7. S. Patra, S.K. Pradhan, Acta Mater. 60, 131 (2012)

    Article  Google Scholar 

  8. H. Dang, V. Singh, S. Rajaputra, S. Guduru, J. Chen, B. Nadimpally, Sol. Energy Mater. Sol. Cells 126, 184 (2014)

    Article  Google Scholar 

  9. S. Liu, W.-H. Zhang, C. Li, J. Cryst. Growth 336, 94–100 (2011)

    Article  ADS  Google Scholar 

  10. S.-M. Yong, P. Muralidharan, S.H. Jo, D.K. Kim, Mater. Lett. 64, 1551 (2010)

    Article  Google Scholar 

  11. M. Shaygan, K. Davami, N. Kheirabi, C.K. Baek, G. Cuniberti, M. Meyyappan, J.-S. Lee, Phys. Chem. Chem. Phys. 16, 22687 (2014)

    Article  Google Scholar 

  12. Y. Wang, S. Liu, J. Chil. Chem. Soc. 57, 1109 (2012)

    Article  Google Scholar 

  13. K. Hoppe, E. Geidel, H. Weller, A. Eychmüller, Phys. Chem. Chem. Phys. 4, 1704 (2002)

    Article  Google Scholar 

  14. J. Polit, A. Kisiel, A. Mycielski, A. Marcelli, E. Sheregii, J. Cebulski, M. Piccinini, M. Cestelli Guidi, B.V. Robouch, A. Nucara, Phys. Stat. Sol. (c) 2, 1147 (2005)

    Article  Google Scholar 

  15. A. Ebina, T. Takahashi, J. Cryst. Growth 59, 51–64 (1982)

    Article  ADS  Google Scholar 

  16. G. Fonthal, L. Tirado-Mejia, J.I. Marin-Hurtado, H. Ariza-Calderon, J.G. Mendoza-Alvarez, J. Phys. Chem. Solids 61, 579 (2000)

    Article  ADS  Google Scholar 

  17. F. Semendy, G. Jaganathan, N. Dhar, S. Trivedi, I. Bhat, Y. Chen, Proc. SPIE 7039, 70391L-1 (2008)

    Article  Google Scholar 

  18. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353 (2003)

    Article  Google Scholar 

  19. G.J. Khatei, Soft Nanosci. Lett. 4, 69 (2014)

    Article  Google Scholar 

  20. K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Appl. Phys. A 108, 911 (2012)

    Article  ADS  Google Scholar 

  21. W.P. Wuelfing, R.W. Murray, J. Phys. Chem. B 106, 3139 (2002)

    Article  Google Scholar 

  22. M.S. Abd El-sadeka, I.S. Yahiab, A.M. Salemd, Mater. Chem. Phys. 130, 591 (2011)

    Article  Google Scholar 

  23. R. Kavitha, K. Sakthivel, Superlattices Microstruct. 86, 51 (2015)

    Article  ADS  Google Scholar 

  24. S. Singh, R. Kumar, K.N. Sood, Thin Solid Films 519, 1078 (2010)

    Article  ADS  Google Scholar 

  25. A.U. Ubale, R.J. Dhokne, P.S. Chikhlikar, V.S. Sangawar, D.K. Kulkarni, Bull. Mater. Sci. 29, 165–168 (2006)

    Article  Google Scholar 

  26. M.M. Mandurah, K.C. Saraswat, T.I. Kamins, I.E.E.E. Trans, Electron Dev. 28, 1163 (1981)

    Article  ADS  Google Scholar 

  27. M.M. Mandurah, K.C. Saraswat, T.I. Kamins, I.E.E.E. Trans, Electron Dev. 28, 1171 (1981)

    Article  ADS  Google Scholar 

  28. J. Levinson, J. Appl. Phys. 53, 1193 (1982)

    Article  ADS  Google Scholar 

  29. R.S.S. Saravanan, D. Pukazhselvan, C.K. Mahadevan, J. Alloys Compd. 517, 139 (2012)

    Article  Google Scholar 

  30. V. Šnejdar, J. Jerhot, Thin Solid Films 37, 303 (1976)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Awad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadia, N.M.A., Awad, M.A., Mohamed, S.H. et al. Optical and electrical properties of hydrothermally prepared CdTe nanowires. Appl. Phys. A 122, 889 (2016). https://doi.org/10.1007/s00339-016-0425-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0425-9

Keywords

Navigation