Skip to main content
Log in

Optical and electrical properties of high-quality Ti2O3 epitaxial film grown on sapphire substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Epitaxial film of Ti2O3 with high crystalline quality was grown on Al2O3 substrate by pulsed laser deposition process using a powder-pressed TiO2 target in active O2 flow. X-ray diffraction clearly reveals the (0006) crystalline Ti2O3 orientation and its \( (10\overline{1} 0)_{{{\text{Ti}}_{ 2} {\text{O}}_{ 3} }} ||(10\overline{1} 0)_{\text{sapphire}} \) in-plane epitaxial relationship with the substrate. Scanning electron microscopy images show that the film grew uniformly on the substrate with a Volmer–Weber mode. High-resolution transmission electron microscopy and selected area electron diffraction further confirm the high crystalline quality of the film. Transmittance spectrum shows that the Ti2O3 film is highly transparent in 400–800 nm with the optical band gap estimated to be 3.53 eV by Tauc plot. The temperature-dependent Hall effect measurement indicates that the Ti2O3 film appears to be n-type semiconductor with carrier concentration, mobility, and resistivity showing typical temperature-dependent behavior. The donor ionization energy was estimated to be 83.6 meV by linear relationship of conductivity versus temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Andersson, B. Collén, U. Kuylenstierna, A. Magnéli, Acta Chem. Scand. 11, 1641 (1957)

    Article  Google Scholar 

  2. J.P. Strachan, M.D. Pickett, J.J. Yang, S. Aloni, A.L. David Kilcoyne, G. Medeiros-Ribeiro, R. Stanley Williams, Adv. Mater. 22, 3573 (2010)

    Article  Google Scholar 

  3. D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, C.S. Hwang, Nat. Nanotechnol. 5, 148 (2010)

    Article  ADS  Google Scholar 

  4. M. Canillas, E. Chinarro, M. Carballo-Vila, J.R. Jurado, B. Moreno, J. Mater. Chem. B 1, 6459 (2013)

    Article  Google Scholar 

  5. V. Adamaki, F. Clemens, P. Ragulis, S.R. Pennock, J. Taylor, C.R. Bowen, J. Mater. Chem. A 2, 8328 (2014)

    Article  Google Scholar 

  6. N. Okinak, T. Akiyama, Jpn. J. Appl. Phys. 45, 7009 (2006)

    Article  ADS  Google Scholar 

  7. Q. He, Q. Hao, G. Chen, B. Poudel, X. Wang, D. Wang, Z. Ren, Appl. Phys. Lett. 91, 52505 (2007)

    Article  ADS  Google Scholar 

  8. N.V. Morozova, I.A. Khmeleva, S.V. Ovsyannikov, A.E. Karkin, V.V. Shchennikov, Phys. Stat. Sol. (b) 250, 741 (2013)

    Article  ADS  Google Scholar 

  9. U. Diebold, Surf. Sci. Rep. 48, 53 (2003)

    Article  ADS  Google Scholar 

  10. R.F. Bartholomew, D.R. Fankl, Phys. Rev. 187, 828 (1969)

    Article  ADS  Google Scholar 

  11. C.E. Rice, W.R. Robinson, Acta Crystallogr. Sect. B 33, 1342 (1977)

    Article  Google Scholar 

  12. J.B. Goodenough, Phys. Rev. 117, 1442 (1960)

    Article  ADS  Google Scholar 

  13. A.I. Poteryaev, A.I. Lichtenstein, G. Kotliar, Phys. Rev. Lett. 93, 086401 (2004)

    Article  ADS  Google Scholar 

  14. M. Taguchi, A. Chainani, M. Matsunami, R. Eguchi, Y. Takata, M. Yabashi, S. Shin, Phys. Rev. Lett. 104, 106401 (2010)

    Article  ADS  Google Scholar 

  15. F.J. Morin, Phys. Rev. Lett. 3, 34 (1959)

    Article  ADS  Google Scholar 

  16. W. Yan, M. Fang, M. Liu, S. Kang, R. Wang, L. Zhang, L. Liu, J. Appl. Phys. 111, 123509 (2012)

    Article  ADS  Google Scholar 

  17. R. Lopez, L.C. Feldman, R.F. Haglund Jr., Phys. Rev. Lett. 93, 177403 (2004)

    Article  ADS  Google Scholar 

  18. See http://www.designinsite.dk/htmsider/inspmat.htm for the application of Ti2O3 in thread guides

  19. See http://priorartdatabase.com/IPCOM/000063571 for the application of Ti2O3 in thermal memory

  20. P. Kiri, G. Hyett, R. Binions, Adv. Mater. Lett. 1, 86 (2010)

    Article  Google Scholar 

  21. M. Uno, S. Nishimoto, Y. Kameshima, M. Miyake, Int. J. Hydrog. Energy 38, 15049 (2013)

    Article  Google Scholar 

  22. J. Wang, P. Yang, B. Huang, Appl. Surf. Sci. 356, 391 (2015)

    Article  ADS  Google Scholar 

  23. R. Merlin, T.A. Perry, Appl. Phys. Lett. 45, 852 (1984)

    Article  ADS  Google Scholar 

  24. M.R. Bayati, R. Molaei, R.J. Narayan, Appl. Phys. Lett. 100, 251606 (2012)

    Article  ADS  Google Scholar 

  25. T. Fujii, N. Sakata, J. Takada, Y. Miura, Y. Daitoh, M. Takano, J. Mater. Res. 9, 1468 (1994)

    Article  ADS  Google Scholar 

  26. J.A. Floro, S.J. Hearne, J.A. Hunter, P. Kotula, E. Chason, S.C. Seel, C.V. Thompson, J. Appl. Phys. 89, 4886 (2001)

    Article  ADS  Google Scholar 

  27. J.H. Van der Merwe, J. Appl. Phys. 34, 123 (1962)

    Article  Google Scholar 

  28. J.W. Matthews, S. Mader, T.B. Light, J. Appl. Phys. 41, 3800 (1970)

    Article  ADS  Google Scholar 

  29. G. Papadimitropoulos, N. Vourdas, K. Giannakopoulos, M. Vasilopoulou, D. Davazoglou, J. Appl. Phys. 109, 103527 (2011)

    Article  ADS  Google Scholar 

  30. M.M. Abdel-Aziz, I.S. Yahia, L.A. Wahab, M. Fadel, M.A. Afifi, Appl. Surf. Sci. 252, 8163 (2006)

    Article  ADS  Google Scholar 

  31. D.J. Won, C.H. Wang, H.K. Jang, D.J. Choi, Appl. Phys. A 73, 595 (2001)

    Article  ADS  Google Scholar 

  32. T. Watanabe, S. Fukayama, M. Miyauchi, A. Fujishima, K. Hashimoto, J. Sol gel Sci. Technol. 19, 71 (2000)

    Article  Google Scholar 

  33. S.V. Ovsyannikov, X. Wu, A.E. Karkin, V.V. Shchennikov, G.M. Manthilake, Phys. Rev. B 86, 024106 (2012)

    Article  ADS  Google Scholar 

  34. S.H. Shin, G.V. Chandrashekhar, R.E. Loehman, J.M. Honig, Phys. Rev. B 8, 1364 (1973)

    Article  ADS  Google Scholar 

  35. T.C. Chi, R.J. Sladek, Phys. Rev. B 7, 5080 (1973)

    Article  ADS  Google Scholar 

  36. K.T. Roro, G.H. Kassier, J.K. Dangbegnon, S. Sivaraya, J.E. Westraadt, J.H. Neethling, J.R. Botha, Semicond. Sci. Technol. 23, 055021 (2008)

    Article  ADS  Google Scholar 

  37. S.V. Ovsyannikov, X. Wu, G. Garbarino, M. Nunez-Regueiro, V.V. Shchennikov, J.A. Khmeleva, L. Dubrovinsky, Phys. Rev. B 88, 184106 (2013)

    Article  ADS  Google Scholar 

  38. S.E. Harrison, Phys. Rev. 93, 52 (1954)

    Article  ADS  Google Scholar 

  39. L. Schmidt-Mende, J.L. MacManus-Driscoll, Mater. Today 10, 40 (2007)

    Article  Google Scholar 

  40. B.J. Morgan, G.W. Watson, J. Phys. Chem. C 114, 2321 (2010)

    Article  Google Scholar 

  41. C.G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from Shaanxi postdoctoral scientific research projects, the National Natural Science Foundation (11204238), National University Research Fund (GK261001009), the Changjiang Scholar and Innovative Research Team (IRT_14R33), the Overseas Talent Recruitment Project (B14041) and the Chinese National 1000-talent-plan program. Haibo Fan wishes to thank Prof. Jingwen Zhang for the help of Hall effect measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haibo Fan or Shengzhong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, H., Wang, M., Yang, Z. et al. Optical and electrical properties of high-quality Ti2O3 epitaxial film grown on sapphire substrate. Appl. Phys. A 122, 964 (2016). https://doi.org/10.1007/s00339-016-0415-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0415-y

Keywords

Navigation