Skip to main content
Log in

Reverse rectification and negative differential resistance effects in doped armchair graphene ribbons device

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, we perform first-principles calculations based on density functional theory and non-equilibrium Green’s function to study the electronic transport properties of the 10-armchair graphene ribbons devices doped by boron and phosphorus atoms. Two kinds of device show a strong inverse rectification and negative differential resistance (NDR) effect. The effect of doping position on rectifying phenomenon are analyzed by calculating the transmission spectra and the energy band structures of the related electrodes as well as the projected density of states for two devices at different bias. And the observed NDR effect is explained by the local density of states. The results indicate that the asymmetric doping of the impurity atom contributes to the electron transport of the device, being used to design a molecular rectifier with good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Balzani, A. Credi, M. Venturi, Nanotoday 2, 18 (2007)

    Article  Google Scholar 

  2. C. Joachim, M.A. Ratner, PNAS 102, 8801 (2005)

    Article  ADS  Google Scholar 

  3. H. Song, Y. Kim, Y.H. Jang, H. Jeong, M.A. Reed, T. Lee, Nature 462, 1039 (2009)

    Article  ADS  Google Scholar 

  4. I. Díez-Pérez, J. Hihath, Y. Lee, L.P. Yu, L. Adamska, M.A. Kozhushner, I.I. Oleynik, N. Tao, Nat. Chem. 1, 635 (2009)

    Article  Google Scholar 

  5. G.C. Hu, J.H. Wei, S.J. Xie, Appl. Phys. Lett. 91, 142115 (2007)

    Article  ADS  Google Scholar 

  6. W.F. Reus, M.M. Thuo, N.D. Shapiro, C.A. Nijhuis, G.M. Whitesides, ACS Nano 6, 4806 (2012)

    Article  Google Scholar 

  7. J. Chen, M.A. Reed, A.M. Rawlett, J.M. Tour, Science 286, l550 (1999)

    Google Scholar 

  8. Y. Ren, K.Q. Chen, J. Appl. Phys. 107, 044514 (2010)

    Article  ADS  Google Scholar 

  9. G.M. Ji, Y.Q. Xu, B. Cui, C.F. Fang, X.R. Kong, D.M. Li, D.S. Liu, RSC Adv. 2, 11349 (2012)

    Article  Google Scholar 

  10. X.R. Wang, Y.J. Ouyang, X.L. Li, H.L. Wang, J. Guo, H.J. Dai, Phys. Rev. Lett. 100, 206803 (2008)

    Article  ADS  Google Scholar 

  11. W.Y. Kim, K.S. Kim, Nat. Nanotechnol. 3, 408 (2008)

    Article  Google Scholar 

  12. F. Muñoz-Rojas, J. Fernández-Rossier, J.J. Palacios, Phys. Rev. Lett. 102, 136810 (2009)

    Article  ADS  Google Scholar 

  13. A. Aviram, M.A. Ratner, Chem. Phys. Lett. 29, 277 (1974)

    Article  ADS  Google Scholar 

  14. J. Li, Z.H. Zhang, G. Kwong, W. Tian, Z.Q. Fan, X.Q. Deng, Carbon 61, 284 (2013)

    Article  Google Scholar 

  15. W.K. Zhao, B. Cui, C.F. Fang, G.M. Ji, J.F. Zhao, X.R. Kong, D.Q. Zou, X.H. Jiang, D.M. Li, D.S. Liu, Phys. Chem. Chem. Phys. 17, 3115 (2015)

    Article  Google Scholar 

  16. Z.Y. Li, D.S. Kosov, J. Phys. Chem. B 110, 19116 (2006)

    Article  Google Scholar 

  17. X.Q. Deng, J.C. Zhou, Z.H. Zhang, G.P. Tang, M. Qiu, Appl. Phys. Lett. 95, 103113 (2009)

    Article  ADS  Google Scholar 

  18. J. Taylor, M. Brandbyge, K. Stokbro, Phys. Rev. Lett. 89, 138301 (2002)

    Article  ADS  Google Scholar 

  19. X.H. Zheng, X.L. Wang, T.A. Abtew, Z. Zeng, J. Phys. Chem. C 114, 4190 (2010)

    Article  Google Scholar 

  20. S.S. Yu, W.T. Zheng, Q. Jiang, IEEE Trans. Nanotechnol. 9, 78 (2010)

    Article  ADS  Google Scholar 

  21. J. Li, Z.Y. Li, G. Zhou, Z.R. Liu, J. Wu, B.L. Gu, J. Ihm, W.H. Duan, Phys. Rev. B 82, 115410 (2010)

    Article  ADS  Google Scholar 

  22. S.M. Choi, S.H. Jhi, Phys. Rev. Lett. 101, 266105 (2008)

    Article  ADS  Google Scholar 

  23. W.H. Brito, R.H. Miwa, Phys. Rev. B 82, 045417 (2010)

    Article  ADS  Google Scholar 

  24. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  25. M. Brandbyge, J.L. Mozos, P. Ordejόn, J. Taylor, J.K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  26. J. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  27. M. Büttiker, Y. Imry, R. Landauer, S. Pinhas, Phys. Rev. B 31, 6207 (1985)

    Article  ADS  Google Scholar 

  28. A. Staykov, M. Watanabe, T. Ishhara, K. Yoshizawa, J. Phys. Chem. C 118, 27539 (2014)

    Article  Google Scholar 

  29. W. Lu, V. Meunier, J. Bernholc, Phys. Rev. Lett. 95, 206805 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities under Grant No. JUSRP51628B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoan Bian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, P., Zheng, Y., Bian, B. et al. Reverse rectification and negative differential resistance effects in doped armchair graphene ribbons device. Appl. Phys. A 122, 863 (2016). https://doi.org/10.1007/s00339-016-0406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0406-z

Keywords

Navigation