Skip to main content
Log in

DFT insights into the electronic and optical properties of fluorine-doped monoclinic niobium pentoxide (B-Nb2O5:F)

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report on the effect of fluorine doping on the electronic structure and optical properties of monoclinic niobium pentoxide (B-Nb2O5) as revealed by the first principles calculations. Density functional theory (DFT) along with generalized gradient approximation (GGA) at the revised Perdew-Burke-Ernzerhof (PBEsol) exchange–correlation functional was used in this study. The band calculations revealed that the studied materials are indirect bandgap semiconductors, with bandgap energies of 2.67 and 2.28 eV for the undoped and F-doped B-Nb2O5, respectively. Upon doping B-Nb2O5, the Fermi level shifts towards the conduction band, allowing optical absorption in the visible region with enhanced transmittance in the wavelength range 400-1000 nm. The calculated static refractive index of the undoped B-Nb2O5 is in good agreement with the reported experimental value, which is enhanced upon F-incorporation resulting in cladding properties for the F-doped B-Nb2O5. Also, the effective mass of free charge carriers increased upon F-doping. The enhanced properties were attributed to the effect of the excessive valent electron of the incorporated F atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. A.M. Mohamed, S.A. Shaban, H.A. El Sayed, B.E. Alanadouli, N.K. Allam, Morphology–photoactivity relationship: WO3 nanostructured films for solar hydrogen production. Int. J. Hydrogen Energy 41, 866–872 (2016)

    Article  Google Scholar 

  2. T. Gu, Z. Wang, T. Tada, S. Watanabe, First principles simulations on bulk Ta2O5 and Cu/Ta2O5/Pt hetero junction: electronic structures and transport properties. J. Appl. Phys. 106, 103713 (2009)

    Article  ADS  Google Scholar 

  3. A.M. Mohamed, A.S. Aljaber, S.Y. AlQaradawi, N.K. Allam, TiO2 nanotubes with ultrathin walls for enhanced water splitting. Chem. Commun. 51, 12617–12620 (2015)

    Article  Google Scholar 

  4. R. Nashed, F.M. Alamgir, S.S. Jang, Y. Ismail, M.A. El-Sayed, Bandgap bowing in Ta-W-O system for efficient solar energy conversion: insights from density functional theory and X-ray diffraction. Appl. Phys. Lett. 103, 133905 (2013)

    Article  ADS  Google Scholar 

  5. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  Google Scholar 

  6. A.W. Amer, M.A. El-Sayed, N.K. Allam, Tuning the photoactivity of Zirconia nanotubes-based photoanodes via ultra-thin layers of ZrN: an effective approach towards visible light-water splitting. J. Phys. Chem. C, doi: 10.1021/acs.jpcc.6b01144

  7. Z. Gu, T. Zhai, B. Gao, X. Sheng, Y. Wang, H. Fu, Y. Ma, J. Yao, Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. J. Phys. Chem. B 110, 23829–23836 (2006)

    Article  Google Scholar 

  8. D. Chen, J. Ye, Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv. Funct. Mater. 18, 1922–1928 (2008)

    Article  Google Scholar 

  9. A.W. Amer, S.M. Mohamed, A.M. Hafez, S.Y. AlQaradawi, A.S. Aljaber, N.K. Allam, Self-assembled zirconia nanotube arrays: fabrication mechanism, energy consideration and optical activity. RSC Adv. 4, 36336–36343 (2014)

    Article  Google Scholar 

  10. N. Samir, D.S. Eissa, N.K. Allam, Self-assembled growth of vertically aligned ZnO nanorods for light sensing applications. Mater. Lett. 137, 45–48 (2014)

    Article  Google Scholar 

  11. B.S. Shaheen, A.M. Hafez, B. Murali, A.R. Kirmani, A. Amassian, O.F. Mohammed, N.K. Allam, 10-fold enhancement in light-driven water splitting using niobium oxynitride microcone array films. Solar Energy Mater. Solar Cells 151, 149–153 (2016)

    Article  Google Scholar 

  12. P. Carniti, A. Gervasini, M. Marzo, Dispersed NbOx catalytic phases in silica matrixes: influence of niobium concentration and preparative route. J. Phys. Chem. C 112, 14064–14074 (2008)

    Article  Google Scholar 

  13. S.H. Mujawar, A.I. Inamdar, S.B. Patil, P.S. Patil, Electrochromical properties of spray-deposited niobium oxide thin films. Solid State Ionics 177, 3333–3338 (2006)

    Article  Google Scholar 

  14. G. Agarwal, G.B. Reddy, Study of surface morphology and optical properties of Nb2O5 thin films with annealing. J. Mater. Sci.: Mater. Electron. 16, 21–24 (2005)

    Google Scholar 

  15. S. Pérez-Walton, C. Valencia-Balvin, G.M. Dalpian, J.M. Osorio-Guillén, Electronic, dielectric, and optical properties of the B phase of niobium pentoxide and tantalum pentoxide by first-principles calculations. Phys. Status Solidi B 250(8), 1644–1650 (2013)

    Article  ADS  Google Scholar 

  16. E. Kurmaev, A. Moewes, O. Bureev, I. Nekrasov, V. Cherkashenko, M. Korotin, D. Ederer, Electronic structure of niobium oxides. J. Alloys Compd. 347(1–2), 213–218 (2002)

    Article  Google Scholar 

  17. Z. Wang, J. Hou, Ch. Yang, Sh Jiao, K. Huang, H. Zhu, Template-free synthesis of 3D Nb3O7F hierarchical nanostructures and enhanced photocatalytic activities. Phys. Chem. Chem. Phys. 15, 3249–3255 (2013)

    Article  Google Scholar 

  18. B.S. Shaheen, T.C. Davenport, H.G. Salem, S.M. Haile, N.K. Allam, Rapid and controlled electrochemical synthesis of crystalline niobium oxide microcones. MRS Commun. 5, 495–501 (2015)

    Article  Google Scholar 

  19. T.S. Elshazly, W.M.I. Hassan, S.S.A. Rehim, N.K. Allam, Unravelling the interplay of dopant concentration and band structure engineering of monoclinic niobium pentoxide: a model photoanode for water splitting. Int. J. Hydrogen Energy 40, 13867–13875 (2015)

    Article  Google Scholar 

  20. A.L. Viet, M.V. Reddy, R. Jose, B.V.R. Chowdari, S. Ramakrishna, Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J. Phys. Chem. C 114, 664–671 (2010)

    Article  Google Scholar 

  21. R. Sahu, U. De, Role of Nb2O5 phase in the formation of piezoelectric PbNb2O6. Thermochim. Acta 589, 25–30 (2014)

    Article  Google Scholar 

  22. F. Emmenegger, M. Robinson, Preparation and dielectric properties of niobium pentoxide crystals. J. Phys. Chem. Solids 29(9), 1673–1681 (1968)

    Article  ADS  Google Scholar 

  23. T. Murase, H. Irie, K. Hashimoto, Ag+-inserted NbO2F as a novel photocatalyst. J. Phys. Chem. B 109, 13420–13423 (2005)

    Article  Google Scholar 

  24. F. Huang, Z. Fu, W. Wang, H. Wang, Y. Wang, J. Zhang, Q. Zhang, S.W. Lee, K. Niihara, Synthesis of shape-controlled Nb3O7F/NbB2 heterostructure: a new idea to synthesize binary hybrid materials by incomplete reaction. Mater. Res. Bull. 45(6), 739–743 (2010)

    Article  Google Scholar 

  25. ChJ Cramer, D.G. Truhlar, Density functional theory for transition metals and transition metal chemistry Phys. Chem. Chem. Phys. 11, 10757–10816 (2009)

    Article  Google Scholar 

  26. P. Haas, F. Tran, P. Blaha, Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B: Condens. Matter Mater. Phys. 79, 085104 (1–10) (2009)

    ADS  Google Scholar 

  27. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14, 2717–2744 (2002)

    ADS  Google Scholar 

  28. M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, J.D. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992)

    Article  ADS  Google Scholar 

  29. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008)

    Article  ADS  Google Scholar 

  30. H.J. Monkhorst, J.D. Pack, Special points for Brillonin-zone integrations. Phys. Rev. B: Solid State 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  31. D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B: Condens. Matter 41, 7892–7895 (1990)

    Article  ADS  Google Scholar 

  32. F. Laves, W. Petter, H. Wulf, Die Kristallstruktur von ζ-Nb2O5. Naturwissenschaften 51, 633–634 (1964)

    Article  ADS  Google Scholar 

  33. T. Ercit, Refinement of the structure of ζ-Nb2O5 and its relationship to the rutile and thoreaulite structures. Miner. Petrol. 43(3), 217–223 (1991)

    Article  Google Scholar 

  34. R.S. Mulliken, Electronic population analysis on LCAOMO molecular wave functions. I. J. Chem. Phys. 23, 1833–1840 (1955)

    Article  ADS  Google Scholar 

  35. C. Nico, M.R.N. Soares, J. Rodrigues, M. Matos, R. Monteiro, M.P.F. Grac-a, M.A. Valente, F.M. Costa, T. Monteiro, Sintered NbO powders for electronic device applications. J. Phys. Chem. C 115, 4879–4886 (2011)

    Article  Google Scholar 

  36. Y. Jiang-Ni, Z. Zhi-Yong, Electronic structure and optical properties of Nb-doped Sr2TiO4 by density function theory calculation. Chin. Phys. B 18, 2945–2952 (2009)

    Article  ADS  Google Scholar 

  37. X.D. Liu, E.Y. Jiang, Z.Q. Li, Q.G. Song, Electronic structure and optical properties of Nb-doped anatase TiO2. Appl. Phys. Lett. 92(25), 252104 (2008)

    Article  ADS  Google Scholar 

  38. E. Burstein, Anoma1ous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954)

    Article  ADS  Google Scholar 

  39. S. Saha, T.P. Sinha, A. Mookerjee, Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys. Rev. B. 62, 8828–8834 (2000)

    Article  ADS  Google Scholar 

  40. N. Al-Aqtach, F. Apostal, W.N. Mei, R.F. Sabirianov, Electronic and optical properties of TaO1-xN1+x based alloys. J. of Solid State Chem. 198, 337–343 (2013)

    Article  ADS  Google Scholar 

  41. P. Li, W. Fan, Y. Li, H. Sun, X. Cheng, X. Zhao, M. Jiang, First-principles study of the electronic, optical properties and lattice dynamics of tantalum oxynitride. Inorg. Chem. 49, 6917–6924 (2010)

    Article  Google Scholar 

  42. D. Kurita, S. Ohta, K. Sugiura, H. Ohta, K. Koumoto, Carrier generation and transport properties of heavily Nb-doped anatase TiO 2 epitaxial films at high temperatures. J. Appl. Phys. 100, 096105 (2006)

    Article  ADS  Google Scholar 

  43. F. Emmenegger, M. Robinson, Preparation and dielectric properties of niobium pentoxide crystals. J. Phys. Chem. Solids 29, 1673–1681 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

TSE would like to thank Elsewedy Electric group and Mr. S. A. Kinton for their valuable support during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nageh K. Allam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shazly, T.S., Hassan, W.M.I., Rehim, S.S.A. et al. DFT insights into the electronic and optical properties of fluorine-doped monoclinic niobium pentoxide (B-Nb2O5:F). Appl. Phys. A 122, 859 (2016). https://doi.org/10.1007/s00339-016-0394-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0394-z

Keywords

Navigation