Skip to main content
Log in

Linear and nonlinear optical investigations of nano-scale Si-doped ZnO thin films: spectroscopic approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pure and Si-doped ZnO (SZO) thin films at different concentration of Si (1.9 and 2.4 wt%) were deposited on highly cleaned glass substrate by radio frequency (DC/RF) magnetron sputtering. The morphological and structural investigations have been performed by atomic force electron microscope (AFM) and X-ray diffraction (XRD). The X-ray photoelectron spectroscopy was employed to study the composition and the change in the chemical state of Si-doped ZnO thin films. The optical observations like transmittance, energy band gap, extinction coefficient, refractive index, dielectric loss of pure and Si-doped ZnO thin films have been calculated. The linear optical susceptibility, nonlinear refractive index, and nonlinear optical susceptibility were also studied by the spectroscopic approach rather than conventional Z-scan method. The energy gap of Si-doped ZnO thin films was found to increase as compared to pure ZnO thin films. The crystallinity of the ZnO thin films was effected by the Si doping. The O1s spectra in pure and Si-doped ZnO revealed the bound between O−2 and Zn+2 ions and reduction in the surface oxygen with the Si doping. The chemical state analysis of Si 2p showed the conversation of Si to SiOx and SiO2. The increase in the first-order linear optical susceptibility χ (1) and third-order nonlinear optical susceptibility χ (3) was observed with the Si doping. The nonlinear studies gave some details about the applications of metal oxides in nonlinear optical devices. In short, this study showed that Si doping through sputtering has effected on the structural, surface and optical properties of ZnO thin films which could be quite useful for advanced applications such as metal-oxide-based optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. D. Cotter, R.J. Manning, K.J. Blow, A.D. Ellis, A.E. Kelly, D. Nesset, I.D. Philips, A.J. Poustie, D.C. Rogers, Science 286, 1523 (1999)

    Article  Google Scholar 

  2. P.Atkins, J. De Paula, “Akins’ Physical Chemistry”, 10th edition. (Oxford University press, UK, 2014)

  3. Y.S. Parak, opto-electronic review, 9(2), 117 (2001)

  4. C. de Mello Donegá (eds.) in chapter 2 “Nanoparticles: Workhorses of Nanoscience” (Springer, Verlag Berlin Heidelberg, 2014)

  5. K. Omri, I. Najeh, R. Dhahri, J. El Ghoul, L. El Mir, Microelectron. Eng. 128, 53 (2014)

    Article  Google Scholar 

  6. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, J. Vac. Sci. Technol., B 22, 932 (2004)

    Article  Google Scholar 

  7. H.Morkoc, U.Ozgur, Zinc Oxide Fundamentals Materials and Device Technology, 1st ed. (Wiley, VCH, 2009)

  8. K. Omri, A. Bettaibi, I. Najeh, S. Rabaoui, K. Khirouni, L. El Mir, J. Mater. Sci.: Mater. Electron. 27, 226 (2016)

    Google Scholar 

  9. O. Lupan, T. Pauporté, T. Le Bahers, B. Viana, I. CiofiniAdv, Funct. Mater. 21, 3564 (2011)

    Article  Google Scholar 

  10. S. Chu, M. Olmedo, Z. Yang, J. Kong, J. LiuAppl, Phys. Lett. 93, 181106 (2008)

    Google Scholar 

  11. T. Minami, H. Sato, H. Nanto, S. Takata, Jpn. J. Appl. Phys. 25, L776 (1986)

    Article  ADS  Google Scholar 

  12. G. Kaurn, A. Mitra, K.L. Yadav, Prog. Nat. Sci.: Mater. Int. 25, 12 (2015)

    Article  Google Scholar 

  13. A. Jilani, MSh Abdel-wahab, A. Ghamdi, A. Dahlan, I.S. Yahia, Physica. B 481, 97 (2016)

    Article  ADS  Google Scholar 

  14. H. Jung, D. Kim, H. Kim, Appl. Surf. Sci. 297, 125 (2014)

    Article  ADS  Google Scholar 

  15. Z.H. Li, E.S. Cho, S.J. Kwon, Appl. Surf. Sci. 314, 97 (2014)

    Article  ADS  Google Scholar 

  16. J. Nag, R.F. Haglund, J. Phys.: Condens. Matter 20, 264016 (2008)

    ADS  Google Scholar 

  17. S. Ghosh, D.K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya, W. Assmann, Vacuum 57, 377 (2000)

    Article  Google Scholar 

  18. I. Sorar, D. Saygin-Hinczewski, M. Hinczewski, F.Z. Tepehan, Appl. Surf. Sci. 257, 7343 (2011)

    Article  ADS  Google Scholar 

  19. C.M. Muiva, T.S. Sathiaraj, K. Maabong, Ceram. Int. 37, 555 (2011)

    Article  Google Scholar 

  20. J. Clatot, G. Campet, A. Zeinert, C. Labrug_ere, M. Nistor, A. Rougier, Sol. Energ. Mat. Sol. Cells. 95, 2357 (2011)

    Article  Google Scholar 

  21. J.T. Luo, X.Y. Zhu, G. Chen, F. Zeng, F. Pan, Appl. Surf. Sci. 258, 2177 (2012)

    Article  ADS  Google Scholar 

  22. G.B. Williamson, R.C. Smallman, Philos. Mag. 1, 34 (1956)

    Article  ADS  Google Scholar 

  23. S. Jassim, A. Abubaker, R.A. Zumaila, G.A. Ali, Results Phys. 3, 173 (2013)

    Article  ADS  Google Scholar 

  24. G.K. Mani, J.B.B. Rayappan, J. Alloys. Compd. 582, 414 (2014)

    Article  Google Scholar 

  25. X.S. Wang, Z.C. Wu, J.F. Webb, Z.G. Liu, Appl. Phys. A 77(3–4), 561 (2003)

    Article  ADS  Google Scholar 

  26. E. R. Shaaban, M. El-Hagary, El SayedMoustafa, H. Shokry Hassan, Yasser A. M. Ismail, M. Emam-Ismail, A. S. Ali, Structural. Appl. Phys. A 122(1), 1 (2016)

  27. R.D. Shannon, Acta. Crystallogr. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  28. S.-Y. Kuo, W.-C. Chen, C.-P. Cheng, Superlattices Microstruct. 39, 162 (2006)

    Article  ADS  Google Scholar 

  29. N. Rashidi, V.L. Kuznetsov, J.R. Dilworth, M. Pepper, P.J. Dobson, P.P. Edwards, J. Mater. Chem. C 1, 6960 (2013)

    Article  Google Scholar 

  30. R. Chauhan, A. Kumar, R.P. Chaudhary, Res. Chem. Intermed. 38, 1483 (2012)

    Article  Google Scholar 

  31. A.K. Das, P. Misra, L.M. Kukreja, J. Phys. D Appl. Phys. 42, 165405 (2009)

    Article  ADS  Google Scholar 

  32. E. Burstein, Phys. Rev. 93, 632 (1953)

    Article  ADS  Google Scholar 

  33. J.T. Luo, X.Y. Zhu, G. Chen, F. Zeng, F. Pan, Appl. Surf. Sci. 258, 2177 (2011)

    Article  ADS  Google Scholar 

  34. K. Doris, Q. Wang, T. Wang, S.K. Ng, Y.T. Toh, K.P. Lim, Y. Yang, D.T.H. Tan, A.C.S. Appl, Mater. Interfaces 7(39), 21884 (2015)

    Article  Google Scholar 

  35. N.M. Ravindra, P. Ganapathy, J. Choi, Infrared Phys. Tech. 50, 21 (2007)

    Article  ADS  Google Scholar 

  36. V.P. Gupta, N.M. Ravindara, Phys. Stat. Sol. B 100, 715 (1980)

    Article  ADS  Google Scholar 

  37. N. Lameche http://www.sciencedirect.com/science/article/pii/S0030402616308051- aff0005, S. Bouzid, M. Hamici, M. Boudissa, S. Messaci, K. Yahiaoui, Optik, 127, 9663 (2016)

  38. J.F. Bottcher, P.Bordewijk “Theory of electic polarization” (Elsevier, B.V.Netherlands, 1996)

  39. S. Aruna, G. Bhagavannarayana, M. Palanisamy, P.C. Thomas, B. Varghese, P. Sagayaraj, J. Cryst. Growth 300(2), 403 (2007)

    Article  ADS  Google Scholar 

  40. N. Pattanaboonmee, P. Ramasamy, R. Yimnirun, P. Manyum, J. Cryst. Growth 314(1), 196 (2010)

    Article  ADS  Google Scholar 

  41. U. Ilyas, R.S. Rawat, T.L. Tan, P. Lee, R. Chen, H.D. Sun, L. Fengji, S. Zhang, J. Appl. Phys. 110, 093522 (2011)

    Article  ADS  Google Scholar 

  42. W. Kern, Thin Film Processes II (Academic, NY, 1978)

    Google Scholar 

  43. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder. G.E. Muilenberg, Eds. Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN, 1979)

  44. J.-W. He, X. Xu, J.S. Corneille, D.W. Goodman, Surf. Sci. 279, 119 (1992)

    Article  ADS  Google Scholar 

  45. J.F. Moulder, W.F.Stickel, Hand book of X-rays photoelectron spectroscopy, ULAVAC-Phi (USA, 1995)

  46. M. Chen, X. Wang, Y.H. Yu, Z.L. Pei, X.D. Bai, C. Sun, R.F. Huang, L.S. Wen, Appl. Surf. Sci. 158, 134 (2000)

    Article  ADS  Google Scholar 

  47. K.W. Jeong, C. Bae, D. Kim, K. Song, J.M. Shin, A.C.S. Appl, Mater. Interfaces. 2, 611 (2010)

    Article  Google Scholar 

  48. M.A. Mentze, Applied Optics Fundamentals and Device Applications: Nano, MOEMS, and Biotechnology. (CRC Press, USA, 2011)

  49. D.Galen, R. Seth, J. E. Sohn “Linear and Nonlinear Polarizability”, (American Chemical Society, 1991)

  50. M. Frumar, J. Jedelsky, B. Frumarova, T. Wagner, J. Non-Cryst, Solids 326(327), 399 (2003)

    Google Scholar 

  51. H. Ticha, L. Tichy, J. Optoelectron. Adv. Mater. 4, 381 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Jilani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jilani, A., Abdel-wahab, M.S., Zahran, H.Y. et al. Linear and nonlinear optical investigations of nano-scale Si-doped ZnO thin films: spectroscopic approach. Appl. Phys. A 122, 862 (2016). https://doi.org/10.1007/s00339-016-0392-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0392-1

Keywords

Navigation