Skip to main content
Log in

Research on ablation process of constant elastic alloy with femtosecond laser in solution medium

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Constant elastic alloy is widely used material with high applied performance. In order to develop the application of constant elastic alloy, laser ablation of constant elastic alloy in different ablation mediums was investigated with different femtosecond lasers. Constant elastic alloy was ablated in solution with different ethanol contents and different thicknesses of the liquid layer above the target material and for comparison, in air. Also, the effects of laser energy and laser pulses of femtosecond laser on the morphology are studied. The effects of the position of the laser focus relative to the target surface were also discussed. The experimental results indicate that larger laser-induced area and smaller depth of craters tend to be obtained in solution than in air. The laser-induced area firstly increases and then decreases, and depths of craters decrease at first and increase later with the increase in ethanol content. Furthermore, the larger were energy of laser pulses, the larger were laser-induced area and deeper craters made in all different ablation solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Cheng, C.S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, K. Watkins, Opt. Laser Technol. 88, 122 (2013)

    Google Scholar 

  2. A. Spiro, M. Lowe, G. Pasmanilk, Appl. Phys. A 107, 801–808 (2012)

    Article  ADS  Google Scholar 

  3. B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tunnermann, Appl. Phys. A 63, 109–115 (1996)

    Article  ADS  Google Scholar 

  4. S. Bashir, H. Vaheed, K. Mahmood, Appl. Phys. A 110, 389–395 (2013)

    Article  ADS  Google Scholar 

  5. G. Kamlage, T. Bauer, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 77, 307–310 (2003)

    Article  ADS  Google Scholar 

  6. S. Amoruso, R. Bruzzese, X. Wang, N.N. Nedialkov, P.A. Atanasov, J. Phys. D Appl. Phys. 40, 331–340 (2007)

    Article  ADS  Google Scholar 

  7. N. Leng, L. Jiang, X. Li, C.C. Xu, P.J. Liu, Y.F. Lu, Appl. Phys. A 109, 679–684 (2012)

    Article  ADS  Google Scholar 

  8. X. Zhu, A.Y. Naumov, D.M. Villeneuve, P.B. Corkum, Appl. Phys. A 69, S367–S371 (1999)

    Article  ADS  Google Scholar 

  9. N.N. Nedialkov, P.A. Atanasov, S. Amoruso, R. Bruzzese, X. Wang, Appl. Surf. Sci. 253, 7761–7766 (2007)

    Article  ADS  Google Scholar 

  10. X.C. Ni, C.Y. Wang, L. Yang, J.P. Li, L. Chai, W. Jia, R.B. Zhang, Z.G. Zhang, Appl. Surf. Sci. 253, 1616–1619 (2006)

    Article  ADS  Google Scholar 

  11. D.K. Das, J.P. McDonald, S.M. Yalisove, T.M. Pollock, Spectrochim. Acta B 63, 27–36 (2008)

    Article  ADS  Google Scholar 

  12. H.W. Liu, F. Chen, X.H. Wang, Q. Yang, H. Bian, J.H. Si, X. Hou, Thin Solid Films 518, 5188–5194 (2010)

    Article  ADS  Google Scholar 

  13. S. Besner, J.Y. Degorce, A.V. Kabashin, M. Meunier, Appl. Surf. Sci. 247, 163–168 (2005)

    Article  ADS  Google Scholar 

  14. J. Ciganovic, J. Stasic, B. GaKovic, M. Momcilovic, D. Milovanovic, M. Bokorov, M. Trtica, Appl. Surf. Sci. 258, 2741–2748 (2012)

    Article  ADS  Google Scholar 

  15. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, J. Appl. Phys. 113, 213106 (2013)

    Article  ADS  Google Scholar 

  16. C. Albu, A. Dinescu, M. Filipescu, M. Uimeanu, M. Zamfirescu, Appl. Surf. Sci. 278, 347–351 (2013)

    Article  ADS  Google Scholar 

  17. S. Bashir, M.S. Rafique, W. Husinsky, Nucl. Instr. Meth. Phys. Res. B 349, 230–238 (2015)

    Article  ADS  Google Scholar 

  18. L.S. Tan, H.L. Seet, M.H. Hong, X.P. Li, J. Mater. Process. Tech. 209, 4449–4452 (2009)

    Article  Google Scholar 

  19. A.D. Bonis, T. Lovaglio, A. Galasso, A. Santagata, R. Teghil, Appl. Surf. Sci. 353, 433–438 (2015)

    Article  ADS  Google Scholar 

  20. V. Kara, H. Kizil, Opt. Laser Eng. 50, 140–147 (2012)

    Article  Google Scholar 

  21. L.S. Jiao, E.Y.K. Ng, H.Y. Zheng, Appl. Surf. Sci. 264, 52–53 (2013)

    Article  ADS  Google Scholar 

  22. B.R. Campbell, J.A. Palmer, V.V. Semak, Appl. Surf. Sci. 253, 6334–6338 (2007)

    Article  ADS  Google Scholar 

  23. J.K. Park, J.W. Yoon, S.H. Cho, Opt. Lasers Eng. 50, 833–837 (2012)

    Article  Google Scholar 

  24. F.F. Luo, Y.C. Guan, W.L. Ong, Z.R. Du, G.W. Ho, F.P. Li, S.F. Sun, G. Lim, M.H. Hong, Opt. Express 22, 23875 (2014)

    Article  ADS  Google Scholar 

  25. H.W. Kang, H. Lee, A.J. Welch, J. Appl. Phys. 103, 083101 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 91323301, 51475481, and 51475482), 973 of Ministry of Science and Technology of China (Grant No. 2011CB013000), Plan for Supporting the New Century Talents of Education Ministry (Grant No. NCET-12-0548).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youwang Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, G., Su, W., Duan, J. et al. Research on ablation process of constant elastic alloy with femtosecond laser in solution medium. Appl. Phys. A 122, 861 (2016). https://doi.org/10.1007/s00339-016-0386-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0386-z

Keywords

Navigation