Skip to main content
Log in

Surface etching mechanism of carbon-doped Ge2Sb2Te5 phase change material in fluorocarbon plasma

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, carbon-doped Ge2Sb2Te5 (CGST) phase change material has been widely researched for being highly promising material for future phase change memory application. In this paper, the reactive-ion etching of CGST film in CF4/Ar plasma is studied. Compared with GST, the etch rate of CGST is relatively lower due to the existence of carbon which reduce the concentration of F or CF x reactive radicals. It was found that Argon plays an important role in defining the sidewall edge acuity. Compared with GST, more physical bombardment is required to obtain vertical sidewall of CGST. The effect of fluorocarbon gas on the damage of the etched CGST film was also investigated. A Ge- and Sb-deficient layer with tens of nanometers was observed by TEM combining with XPS analysis. The reaction between fluorocarbon plasma and CGST is mainly dominated by the diffusion and consumption of reactive fluorine radicals through the fluorocarbon layer into the CGST substrate material. The formation of damage layer is mainly caused by strong chemical reactivity, low volatility of reaction compounds and weak ion bombardment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Wuttig, Phase-change materials—towards a universal memory? Nat. Mater. 4, 265–266 (2005)

    Article  ADS  Google Scholar 

  2. M. Wuttig, N. Yamada, Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824–832 (2007)

    Article  ADS  Google Scholar 

  3. S. Raoux, W. Welnic, D. Ielmini, Phase change materials and their application to nonvolatile memories. Chem. Rev. 110, 240–267 (2010)

    Article  Google Scholar 

  4. G. Atwood, Engineering—phase-change materials for systems. electronic memories. Science 321, 210–211 (2008)

    Article  Google Scholar 

  5. R.E. Simpson et al., Toward the ultimate limit of phase change in Ge2Sb2Te5. Nano Lett. 10, 414–419 (2010)

    Article  ADS  Google Scholar 

  6. W. Czubatyj, S.J. Hudgens, C. Dennison, C. Schell, T. Lowrey, Nanocomposite phase-change memory alloys for very high temperature data retention. IEEE Electron Device Lett. 31, 869–871 (2010)

    Article  ADS  Google Scholar 

  7. N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, M. Takao, Rapid-phase transitions of GeTe–Sb2 Te3 pseudobinary amorphous thin-films for an optical disk memory. J. Appl. Phys. 69, 2849–2856 (1991)

    Article  ADS  Google Scholar 

  8. X. Zhou et al., Carbon-doped Ge2Sb2Te5 phase change material: a candidate for high-density phase change memory application. Appl. Phys. Lett. 101, 142104 (2012)

    Article  ADS  Google Scholar 

  9. W. Zhou et al., High thermal stability and low density variation of carbon-doped Ge2Sb2Te5 for phase-change memory application. Appl. Phys. Lett. 105, 243113 (2014)

    Article  ADS  Google Scholar 

  10. J.H. Park et al., Reduction of RESET current in phase change memory devices by carbon doping in GeSbTe films. J. Appl. Phys. 117, 115703 (2015)

    Article  ADS  Google Scholar 

  11. G.M. Feng, B. Liu, Z.T. Song, S.L. Feng, B. Chen, Reactive ion etching of Ge2Sb2Te5 in CHF3/O-2 plasma for nonvolatile phase-change memory device. Electrochem. Solid State Lett. 10, D47–D50 (2007)

    Article  Google Scholar 

  12. G.M. Feng, B. Liu, Z.T. Song, S.L. Feng, B.M. Chen, Reactive-ion etching of Ge2Sb2Te5 in CF4/Ar plasma for non-volatile phase-change memories. Microelectron. Eng. 85, 1699–1704 (2008)

    Article  Google Scholar 

  13. C. Xu, B. Liu, Z.T. Song, S.L. Feng, B.M. Chen, Reactive-ion etching of Sn-doped Ge2Sb2Te5 in CHF3/O-2 plasma for non-volatile phase-change memory device. Thin Solid Films 516, 7871–7874 (2008)

    Article  ADS  Google Scholar 

  14. T. Shintani, Y. Anzai, H. Minemura, H. Miyamoto, J. Ushiyama, Nanosize fabrication using etching of phase-change recording films. Appl. Phys. Lett. 85, 639–641 (2004)

    Article  ADS  Google Scholar 

  15. J.W. Butterbaugh, D.C. Gray, H.H. Sawin, Plasma surface interactions in fluorocarbon etching of silicon dioxide. J. Vac. Sci. Technol. B 9, 1461–1470 (1991)

    Article  Google Scholar 

  16. C.D.W. Wilkinson, M. Rahman, Dry etching and sputtering. Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 362, 125–138 (2004)

    Article  ADS  Google Scholar 

  17. B.H. Li, L.H. Cao, J.H. Zhao, Evaluation of damage induced by inductively coupled plasma etching of 6H-SiC using Au Schottky barrier diodes. Appl. Phys. Lett. 73, 653–655 (1998)

    Article  ADS  Google Scholar 

  18. T. Standaert et al., High density fluorocarbon etching of silicon in an inductively coupled plasma: mechanism of etching through a thick steady state fluorocarbon layer. J. Vac. Sci. Technol. Vac. Surfaces Films 16, 239–249 (1998)

    Article  ADS  Google Scholar 

  19. C.C. Chai, Y.T. Yang, L.J. Yuejin, H.J. Jia, Study of plasma etching of beta-SiC thin films grown on Si-substrate. Opt. Mater. 23, 103–107 (2003)

    Article  ADS  Google Scholar 

  20. M. Schaepkens et al., Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism. J. Vac. Sci. Technol. Vac. Surfaces Films 17, 26–37 (1999)

    Article  ADS  Google Scholar 

  21. A. Sankaran, M.J. Kushner, Fluorocarbon plasma etching and profile evolution of porous low-dielectric-constant silica. Appl. Phys. Lett. 82, 1824–1826 (2003)

    Article  ADS  Google Scholar 

  22. J.W. Lee, H.N. Cho, S.R. Min, C.W. Chung, Inductively coupled plasma reactive ion etching of GeSbTe thin films in a HBr/Ar gas. Integr. Ferroelectr. 90, 95–106 (2007)

    Article  Google Scholar 

  23. I.H. Park, J.W. Lee, C.W. Chung, Investigation on etch characteristics of GeSbTe thin films for phase-change memory. Integr. Ferroelectr. 80, 207–218 (2006)

    Article  Google Scholar 

  24. D. Zhang, M.J. Kushner, Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models. J. Vac. Sci. Technol. Vac. Surfaces Films 19, 524–538 (2001)

    Article  ADS  Google Scholar 

  25. S.K. Kang, M.H. Jeon, J.Y. Park, M.S. Jhon, G.Y. Yeom, Etch damage of Ge2Sb2Te5 for different halogen gases. Jpn. J. Appl. Phys. 50, 4 (2011)

    Article  Google Scholar 

  26. J. Li et al., Direct evidence of reactive ion etching induced damages in Ge2Sb2Te5 based on different halogen plasmas. Appl. Surf. Sci. 378, 163–166 (2016)

    Article  ADS  Google Scholar 

  27. S.K. Kang et al., Effect of Halogen-Based Neutral Beam on the Etching of Ge2Sb2Te5. J. Electrochem. Soc. 158, H768–H771 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA09020402), National Integrate Circuit Research Program of China (2009ZX02023-003), National Natural Science Foundation of China (61261160500, 61376006, 61401444, 61504157), Science and Technology Council of Shanghai (13ZR1447200, 14DZ2294900, 14ZR1447500, 15DZ2270900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanlan Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., Song, S., Song, Z. et al. Surface etching mechanism of carbon-doped Ge2Sb2Te5 phase change material in fluorocarbon plasma. Appl. Phys. A 122, 865 (2016). https://doi.org/10.1007/s00339-016-0381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0381-4

Keywords

Navigation