Skip to main content
Log in

Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, size-dependent effect of an embedded magneto-electro-elastic (MEE) nanoshell subjected to thermo-electro-magnetic loadings on free vibration behavior is investigated. Also, the surrounding elastic medium has been considered as the model of Winkler characterized by the spring. The size-dependent MEE nanoshell is investigated on the basis of the modified couple stress theory. Taking attention to the first-order shear deformation theory (FSDT), the modeled nanoshell and its equations of motion are derived using principle of minimum potential energy. The accuracy of the presented model is validated with some cases in the literature. Finally, using the Navier-type method, an analytical solution of governing equations for vibration behavior of simply supported MEE cylindrical nanoshell under combined loadings is presented and the effects of material length scale parameter, temperature changes, external electric potential, external magnetic potential, circumferential wave numbers, constant of spring, shear correction factor and length-to-radius ratio of the nanoshell on natural frequency are identified. Since there has been no research about size-dependent analysis MEE cylindrical nanoshell under combined loadings based on FSDT, numerical results are presented to be served as benchmarks for future analysis of MEE nanoshells using the modified couple stress theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Van den Boomgaard et al., An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9(10), 1705–1709 (1974)

    Article  ADS  Google Scholar 

  2. Y. Wang et al., Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2(2), 61–68 (2010)

    Article  Google Scholar 

  3. H. Zheng et al., Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303(5658), 661–663 (2004)

    Article  ADS  Google Scholar 

  4. L. Martin et al., Multiferroics and magnetoelectrics: thin films and nanostructures. J. Phys.: Condens. Matter 20(43), 434220 (2008)

    ADS  Google Scholar 

  5. G.S. Lotey, N. Verma, Magnetoelectric coupling in multiferroic BiFeO3 nanowires. Chem. Phys. Lett. 579, 78–84 (2013)

    Article  ADS  Google Scholar 

  6. H. Béa et al., Spintronics with multiferroics. J. Phys.: Condens. Matter 20(43), 434221 (2008)

    ADS  Google Scholar 

  7. A.Q. Jiang et al., A resistive memory in semiconducting BiFeO3 thin-film capacitors. Adv. Mater. 23(10), 1277–1281 (2011)

    Article  Google Scholar 

  8. A. Annigeri, N. Ganesan, S. Swarnamani, Free vibrations of clamped–clamped magneto-electro-elastic cylindrical shells. J. Sound Vib. 292(1), 300–314 (2006)

    Article  ADS  Google Scholar 

  9. R.K. Bhangale, N. Ganesan, Free vibration studies of simply supported non-homogeneous functionally graded magneto-electro-elastic finite cylindrical shells. J. Sound Vib. 288(1), 412–422 (2005)

    Article  ADS  Google Scholar 

  10. J. Reddy, C. Chin, Thermomechanical analysis of functionally graded cylinders and plates. J. Therm. Stress. 21(6), 593–626 (1998)

    Article  Google Scholar 

  11. H. Haddadpour, S. Mahmoudkhani, H. Navazi, Free vibration analysis of functionally graded cylindrical shells including thermal effects. Thin-Walled Struct. 45(6), 591–599 (2007)

    Article  Google Scholar 

  12. M.J. Mescher et al., Novel MEMS microshell transducer arrays for high-resolution underwater acoustic imaging applications. in Sensors, 2002. Proceedings of IEEE (IEEE, 2002)

  13. P. Soltani, J. Saberian, R. Bahramian, Nonlinear vibration analysis of single-walled carbon nanotube with shell model based on the nonlocal elasticity theory. J. Comput. Nonlinear Dyn. 11(1), 011002 (2016)

    Article  Google Scholar 

  14. R.A. Toupin, Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Koiter, Couple stresses in the theory of elasticity. Proc. Koninklijke Nederl. Akaad. van Wetensch 67 (1964)

  16. R.D. Mindlin, Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Asghari et al., Investigation of the size effects in Timoshenko beams based on the couple stress theory. Arch. Appl. Mech. 81(7), 863–874 (2011)

    Article  ADS  MATH  Google Scholar 

  18. F. Yang et al., Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)

    Article  MATH  Google Scholar 

  19. Y.T. Beni, F. Mehralian, H. Razavi, Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory. Compos. Struct. 120, 65–78 (2015)

    Article  Google Scholar 

  20. M.A. Khorshidi, M. Shariati, Free vibration analysis of sigmoid functionally graded nanobeams based on a modified couple stress theory with general shear deformation theory. J. Braz. Soc. Mech. Sci. Eng. 15, 1–13 (2015)

    Google Scholar 

  21. E.M. Miandoab et al., Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Phys. E: Low-Dimens. Syst. Nanostruct. 63, 223–228 (2014)

    Article  ADS  Google Scholar 

  22. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, vol. 1 (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  23. L.H. Donnell, A new theory for the buckling of thin cylinders under axial compression and bending. Trans. Asme 56(11), 795–806 (1934)

    Google Scholar 

  24. J.L. Sanders Jr., An improved first-approximation theory for thin shells (NASA TR-R24). US Government Printing Office, Washington, DC (1959)

  25. A.W. Leissa, Vibration of Shells, Scientific and Technical Information Office. NASA Report No. SP-288 (1973)

  26. E. Reissner, The effect of transverse shear deformation on the bending of elastic plates. Trans. ASME 12, 69–77 (1945)

    MathSciNet  MATH  Google Scholar 

  27. R.D. Mindlin, Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. Trans. ASME 18, 31–38 (1951)

    MATH  Google Scholar 

  28. G. Sheng, X. Wang, Thermoelastic vibration and buckling analysis of functionally graded piezoelectric cylindrical shells. Appl. Math. Model. 34(9), 2630–2643 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Mohammadimehr, M. Moradi, A. Loghman, Influence of the elastic foundation on the free vibration and buckling of thin-walled piezoelectric-based FGM cylindrical shells under combined loadings. J. Solid Mech. 6(4), 347–365 (2014)

    Google Scholar 

  30. L. Ke, Y. Wang, J. Reddy, Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions. Compos. Struct. 116, 626–636 (2014)

    Article  Google Scholar 

  31. L.-L. Ke et al., The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells. Smart Mater. Struct. 23(12), 125036 (2014)

    Article  Google Scholar 

  32. Y. Li, P. Ma, W. Wang, Bending, buckling, and free vibration of magnetoelectroelastic nanobeam based on nonlocal theory. J. Intell. Mater. Syst. Struct. 27(9), 1139–1149 (2016)

    Article  Google Scholar 

  33. A.C. Eringen, Nonlocal continuum field theories (Springer Science & Business Media, Berlin, 2002)

    MATH  Google Scholar 

  34. Q. Wang, On buckling of column structures with a pair of piezoelectric layers. Eng. Struct. 24(2), 199–205 (2002)

    Article  Google Scholar 

  35. T.R. Tauchert, Energy Principles in Structural Mechanics (McGraw-Hill Companies, New York, 1974)

    Google Scholar 

  36. R. Ansari, R. Gholami, H. Rouhi, Vibration analysis of single-walled carbon nanotubes using different gradient elasticity theories. Compos. Part B: Eng. 43(8), 2985–2989 (2012)

    Article  Google Scholar 

  37. C. Loy, K. Lam, C. Shu, Analysis of cylindrical shells using generalized differential quadrature. Shock Vib. 4(3), 193–198 (1997)

    Article  Google Scholar 

  38. J.N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis (CRC Press, Boca Raton, 2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghadiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadiri, M., Safarpour, H. Free vibration analysis of embedded magneto-electro-thermo-elastic cylindrical nanoshell based on the modified couple stress theory. Appl. Phys. A 122, 833 (2016). https://doi.org/10.1007/s00339-016-0365-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0365-4

Keywords

Navigation