Skip to main content
Log in

Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Due to having difficulty in solving governing nonlinear differential equations of a non-uniform microbeam, a few numbers of authors have studied such fields. In the present study, for the first time, the size-dependent vibration behavior of a rotating functionally graded (FG) tapered microbeam based on the modified couple stress theory is investigated using differential quadrature element method (DQEM). It is assumed that physical and mechanical properties of the FG microbeam are varying along the thickness that will be defined as a power law equation. The governing equations are determined using Hamilton’s principle, and DQEM is presented to obtain the results for cantilever and propped cantilever boundary conditions. The accuracy and validity of the results are shown in several numerical examples. In order to display the influence of size on the first two natural frequencies and consequently changing of some important microbeam parameters such as material length scale, rate of cross section, angular velocity and gradient index of the FG material, several diagrams and tables are represented. The results of this article can be used in designing and optimizing elastic and rotary-type micro-electro-mechanical systems like micro-motors and micro-robots including rotating parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. X. Li, Y. Liu, B. Liu, J. Zhou, Effects of submicron WC addition on structures, kinetics and mechanical properties of functionally graded cemented carbides with coarse grains. Int. J. Refract Metal Hard Mater. 56, 132–138 (2016)

    Article  Google Scholar 

  2. Y. Shimazaki, S. Nozu, T. Inoue, Shock-absorption properties of functionally graded EVA laminates for footwear design. Polym. Testing 54, 98–103 (2016)

    Article  Google Scholar 

  3. A. Sola, D. Bellucci, V. Cannillo, Functionally graded materials for orthopedic applications - an update on design and manufacturing. Biotechnol. Adv. 34, 504–531 (2016)

    Article  Google Scholar 

  4. S. Abrate, Vibration of non-uniform rods and beams. J. Sound Vib. 4, 703–716 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. M. Eisenberger, Buckling loads for variable cross-section members with variable axial forces. Int. J. Solids Struct. 27, 135–143 (1991)

    Article  Google Scholar 

  6. X. Li, B. Bhushan, K. Takashima, C.-W. Baek, Y.-K. Kim, Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97, 481–494 (2003)

    Article  Google Scholar 

  7. J. Pei, F. Tian, T. Thundat, Glucose biosensor based on the microcantilever. Anal. Chem. 76, 292–297 (2004)

    Article  Google Scholar 

  8. E. Ghafari, J. Rezaeepazhand, Vibration analysis of rotating composite beams using polynomial based dimensional reduction method. Int. J. Mech. Sci. 115–116, 93–104 (2016)

    Article  Google Scholar 

  9. D. Invernizzi, L. Dozio, A fully consistent linearized model for vibration analysis of rotating beams in the framework of geometrically exact theory. J. Sound Vib. 370, 351–371 (2016)

    Article  ADS  Google Scholar 

  10. Y. Qin, X. Li, E.C. Yang, Y.H. Li, Flapwise free vibration characteristics of a rotating composite thin-walled beam under aerodynamic force and hygrothermal environment. Compos. Struct. 153, 490–503 (2016)

    Article  Google Scholar 

  11. K. Sarkar, R. Ganguli, Modal tailoring and closed-form solutions for rotating non-uniform Euler–Bernoulli beams. Int. J. Mech. Sci. 88, 208–220 (2014)

    Article  Google Scholar 

  12. L. Li, D. Zhang, Dynamic analysis of rotating axially FG tapered beams based on a new rigid–flexible coupled dynamic model using the B-spline method. Compos. Struct. 124, 357–367 (2015)

    Article  Google Scholar 

  13. M.O. Kaya, Free vibration analysis of a rotating Timoshenko beam by differential transform method. Aircraft Engineering and Aerospace Technology 78, 194–203 (2006)

    Article  Google Scholar 

  14. M. Ghafarian, A. Ariaei, Free vibration analysis of a system of elastically interconnected rotating tapered Timoshenko beams using differential transform method. Int. J. Mech. Sci. 107, 93–109 (2016)

    Article  Google Scholar 

  15. S. Rajasekaran, Differential transformation and differential quadrature methods for centrifugally stiffened axially functionally graded tapered beams. Int. J. Mech. Sci. 74, 15–31 (2013)

    Article  MATH  Google Scholar 

  16. D.Y. Hodges, M.Y. Rutkowski, Free-Vibration Analysis of Rotating Beams by a Variable-Order Finite-Element Method. AIAA Journal 19, 1459–1466 (1981)

    Article  ADS  MATH  Google Scholar 

  17. H. Zarrinzadeh, R. Attarnejad, A. Shahba, Free vibration of rotating axially functionally graded tapered beams. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 226, 363–379 (2011)

    Article  Google Scholar 

  18. S. Rajasekaran, Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods. Appl. Math. Model. 37, 4440–4463 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Librescu, L. Meirovitch, S.S. Na, Control of Cantilever Vibration via Structural Tailoring and Adaptive Materials. AIAA Journal 35, 1309–1315 (1997)

    Article  ADS  MATH  Google Scholar 

  20. E.M. Miandoab, H.N. Pishkenari, A. Yousefi-Koma, H. Hoorzad, Polysilicon nano-beam model based on modified couple stress and Eringen’s nonlocal elasticity theories. Physica E 63, 223–228 (2014)

    Article  ADS  Google Scholar 

  21. H.L. Dai, Y.K. Wang, L. Wang, Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. Int. J. Eng. Sci. 94, 103–112 (2015)

    Article  MathSciNet  Google Scholar 

  22. M. Mohammad-Abadi, A.R. Daneshmehr, Modified couple stress theory applied to dynamic analysis of composite laminated beams by considering different beam theories. Int. J. Eng. Sci. 87, 83–102 (2015)

    Article  MathSciNet  Google Scholar 

  23. M. Mohammad-Abadi, A.R. Daneshmehr, Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions. Int. J. Eng. Sci. 74, 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  24. M. Mohammadabadi, A.R. Daneshmehr, M. Homayounfard, Size-dependent thermal buckling analysis of micro composite laminated beams using modified couple stress theory. Int. J. Eng. Sci. 92, 47–62 (2015)

    Article  MathSciNet  Google Scholar 

  25. B. Abbasnejad, G. Rezazadeh, R. Shabani, Stability analysis of a capacitive fgm micro-beam using modified couple stress theory. Acta Mech. Solida Sin. 26, 427–440 (2013)

    Article  Google Scholar 

  26. H. Farokhi, M.H. Ghayesh, Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. Int. J. Eng. Sci. 91, 12–33 (2015)

    Article  MathSciNet  Google Scholar 

  27. M. Salamat-talab, A. Nateghi, J. Torabi, Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory. Int. J. Mech. Sci. 57, 63–73 (2012)

    Article  Google Scholar 

  28. M. Shaat, S.A. Mohamed, Nonlinear-electrostatic analysis of micro-actuated beams based on couple stress and surface elasticity theories. Int. J. Mech. Sci. 84, 208–217 (2014)

    Article  Google Scholar 

  29. M.H. Kahrobaiyan, M. Asghari, M.T. Ahmadian, A Timoshenko beam element based on the modified couple stress theory. Int. J. Mech. Sci. 79, 75–83 (2014)

    Article  MATH  Google Scholar 

  30. H. Darijani, H. Mohammadabadi, A new deformation beam theory for static and dynamic analysis of microbeams. Int. J. Mech. Sci. 89, 31–39 (2014)

    Article  Google Scholar 

  31. W. Chen, L. Li, M. Xu, A modified couple stress model for bending analysis of composite laminated beams with first order shear deformation. Compos. Struct. 93, 2723–2732 (2011)

    Article  Google Scholar 

  32. J.N. Reddy, Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59, 2382–2399 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. A. Nateghi, M. Salamat-talab, Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory. Compos. Struct. 96, 97–110 (2013)

    Article  Google Scholar 

  34. B. Akgöz, Ö. Civalek, Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch. Appl. Mech. 82, 423–443 (2011)

    Article  MATH  Google Scholar 

  35. B. Akgöz, Ö. Civalek, Free vibration analysis of axially functionally graded tapered Bernoulli–Euler microbeams based on the modified couple stress theory. Compos. Struct. 98, 314–322 (2013)

    Article  Google Scholar 

  36. M. Asghari, M.H. Kahrobaiyan, M.T. Ahmadian, A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int. J. Eng. Sci. 48, 1749–1761 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Challamel N, Wang CM: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 2008, 19:doi:10.1088/0957-4484/1019/1034/345703

  38. A.M. Dehrouyeh-Semnani, The influence of size effect on flapwise vibration of rotating microbeams. Int. J. Eng. Sci. 94, 150–163 (2015)

    Article  MathSciNet  Google Scholar 

  39. M. Ghadiri, N. Shafiei, Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions. Acta Astronaut. 121, 221–240 (2016)

    Article  ADS  Google Scholar 

  40. N. Shafiei, M. Kazemi, M. Ghadiri, On size-dependent vibration of rotary axially functionally graded microbeam. Int. J. Eng. Sci. 101, 29–44 (2016)

    Article  MathSciNet  Google Scholar 

  41. N. Shafiei, M. Kazemi, M. Ghadiri, Nonlinear vibration of axially functionally graded tapered microbeams. Int. J. Eng. Sci. 102, 12–26 (2016)

    Article  MathSciNet  Google Scholar 

  42. N. Shafiei, A. Mousavi, M. Ghadiri, On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams. Int. J. Eng. Sci. 106, 42–56 (2016)

    Article  Google Scholar 

  43. N. Shafiei, A. Mousavi, M. Ghadiri, Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM. Compos. Struct. 149, 157–169 (2016)

    Article  Google Scholar 

  44. A.M. Dehrouyeh-Semnani, H. Mostafaei, M. Nikkhah-Bahrami, Free flexural vibration of geometrically imperfect functionally graded microbeams. Int. J. Eng. Sci. 105, 56–79 (2016)

    Article  MathSciNet  Google Scholar 

  45. C.-N. Chen, Buckling equilibrium equations of arbitrarily loaded nonprismatic composite beams and the DQEM buckling analysis using EDQ. Appl. Math. Model. 27, 27–46 (2003)

    Article  MATH  Google Scholar 

  46. C.-N. Chen, DQEM analysis of in-plane vibration of curved beam structures. Adv. Eng. Softw. 36, 412–424 (2005)

    Article  ADS  MATH  Google Scholar 

  47. C.-N. Chen, DQEM analysis of out-of-plane vibration of nonprismatic curved beam structures considering the effect of shear deformation. Adv. Eng. Softw. 39, 466–472 (2008)

    Article  Google Scholar 

  48. G. Karami, P. Malekzadeh, S.A. Shahpari, A DQEM for vibration of shear deformable nonuniform beams with general boundary conditions. Eng. Struct. 25, 1169–1178 (2003)

    Article  Google Scholar 

  49. K. Torabi, H. Afshari, F.H. Aboutalebi, A DQEM for transverse vibration analysis of multiple cracked non-uniform Timoshenko beams with general boundary conditions. Comput. Math Appl. 67, 527–541 (2014)

    Article  MathSciNet  Google Scholar 

  50. N. Shafiei, M. Kazemi, M. Ghadiri, Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler–Bernoulli microbeams. Physica E 83, 74–87 (2016)

    Article  ADS  Google Scholar 

  51. Shu C: Differential quadrature and its application in engineering.2000

  52. X. Wang, H. Gu, Static analysis of frame structures by the differential quadrature element method. Int. J. Numer. Meth. Eng. 40, 759–772 (1997)

    Article  MATH  Google Scholar 

  53. G. Karami, PM: A new differential quadrature methodology for beam analysis and the associated differential quadrature element method. Comput. Methods Appl. Mech. Eng. 191, 3509–3526 (2002)

    Article  ADS  MATH  Google Scholar 

  54. C. Franciosi, S. Tomasiello, A modified quadrature element method to perform static analysis of structures. Int. J. Mech. Sci. 46, 945–959 (2004)

    Article  MATH  Google Scholar 

  55. C. Franciosi, S. Tomasiello, Static analysis of a Bickford beam by means of the DQEM. Int. J. Mech. Sci. 49, 122–128 (2007)

    Article  MATH  Google Scholar 

  56. F. Ebrahimi, E. Salari, Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions. Compos. B Eng. 78, 272–290 (2015)

    Article  Google Scholar 

  57. Y. Huang, X.-F. Li, A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. J. Sound Vib. 329, 2291–2303 (2010)

    Article  ADS  Google Scholar 

  58. J. Yang, H.S. Shen, Vibration Characteristics and Transient Response of Shear-Deformable Functionally Graded Plates in Thermal Environments. J. Sound Vib. 255, 579–602 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghadiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadiri, M., Shafiei, N. & Alireza Mousavi, S. Vibration analysis of a rotating functionally graded tapered microbeam based on the modified couple stress theory by DQEM. Appl. Phys. A 122, 837 (2016). https://doi.org/10.1007/s00339-016-0364-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0364-5

Keywords

Navigation