Applied Physics A

, 122:824 | Cite as

RIR-MAPLE deposition of plasmonic silver nanoparticles

  • Wangyao Ge
  • Thang B. Hoang
  • Maiken H. Mikkelsen
  • Adrienne D. Stiff-Roberts
Rapid communication

Abstract

Nanoparticles are being explored in many different applications due to the unique properties offered by quantum effects. To broaden the scope of these applications, the deposition of nanoparticles onto substrates in a simple and controlled way is highly desired. In this study, we use resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) for the deposition of metallic, silver nanoparticles for plasmonic applications. We find that RIR-MAPLE, a simple and versatile approach, is able to deposit silver nanoparticles as large as 80 nm onto different substrates with good adhesion, regardless of substrate properties. In addition, the nanoparticle surface coverage of the substrates, which result from the random distribution of nanoparticles across the substrate per laser pulse, can be simply and precisely controlled by RIR-MAPLE. Polymer films of poly(3-hexylthiophene-2,5-diyl) (P3HT) are also deposited by RIR-MAPLE on top of the deposited silver nanoparticles in order to demonstrate enhanced absorption due to the localized surface plasmon resonance effect. The reported features of RIR-MAPLE nanoparticle deposition indicate that this tool can enable efficient processing of nanoparticle thin films for applications that require specific substrates or configurations that are not easily achieved using solution-based approaches.

References

  1. 1.
    H. You, S. Yang, B. Ding, H. Yang, Chem. Soc. Rev. 42, 2880 (2013)CrossRefGoogle Scholar
  2. 2.
    Y. Yin, A.P. Alivisatos, Nature 437, 664 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    G.H. Carey, A.L. Abdelhady, Z. Ning, S.M. Thon, O.M. Bakr, E.H. Sargent, Chem. Rev. 115, 12732 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. Shirasaki, G.J. Supran, M.G. Bawendi, V. Bulovic, Nat. Photonics 7, 13 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    P. Martyniuk, A. Rogalski, Prog. Quantum Electron. 32, 89 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    P. Couvreur, Adv. Drug Deliv. Rev. 65, 21 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Sanchot, G. Baffou, R. Marty, A. Arbouet, R. Quidant, C. Girard, E. Dujardin, ACS Nano 6, 3434 (2012)CrossRefGoogle Scholar
  8. 8.
    W. Hou, S.B. Cronin, Adv. Funct. Mater. 23, 1612 (2013)CrossRefGoogle Scholar
  9. 9.
    C.M. Evans, L.C. Cass, K.E. Knowles, D.B. Tice, R.P.H. Chang, E.A. Weiss, J. Coord. Chem. 65, 2391 (2012)CrossRefGoogle Scholar
  10. 10.
    C.H. Chuang, P.R. Brown, V. Bulovic, M.G. Bawendi, Nat. Mater. 13, 796 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    M. Brust, D.J. Schiffrin, D. Bethell, C.J. Kiely, Adv. Mater. 7, 795 (1995)CrossRefGoogle Scholar
  12. 12.
    M.D. Musick, C.D. Keating, L.A. Lyon, S.L. Botsko, D.J. Peña, W.D. Holliway, T.M. McEvoy, J.N. Richardson, Chem. Mater. 12, 2869 (2000)CrossRefGoogle Scholar
  13. 13.
    U. Gurudas, E. Brooks, D.M. Bubb, S. Heiroth, T. Lippert, A. Wokaun, J. Appl. Phys. 104, 073107 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    T. Yamamoto, K. Machi, S. Nagare, K. Hamada, M. Senna, Solid State Ion. 172, 299 (2004)CrossRefGoogle Scholar
  15. 15.
    J.C. Alonso, R. Diamant, P. Castillo, M.C. Acosta-García, N. Batina, E. Haro-Poniatowski, Appl. Surf. Sci. 255, 4933 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    W. Ge, A. Atewologun, A.D. Stiff-Roberts, Org. Electron. 22, 98 (2015)CrossRefGoogle Scholar
  17. 17.
    A.P. Caricato, M.G. Manera, M. Martino, R. Rella, F. Romano, J. Spadavecchia, T. Tunno, D. Valerini, Appl. Surf. Sci. 253, 6471 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    A.P. Caricato, M. Epifani, M. Martino, F. Romano, R. Rella, A. Taurino, T. Tunno, D. Valerini, J. Phys. D Appl. Phys. 42, 095105 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    R. Pate, K.R. Lantz, A.D. Stiff-Roberts, Thin Solid Films 517, 6798 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    A.P. Caricato, A. Luches, R. Rella, Sensors 9, 2682 (2009)CrossRefGoogle Scholar
  21. 21.
    S.E. Skrabalak, L. Au, X. Li, Y. Xia, Nat. Protoc. 2, 2182 (2007)CrossRefGoogle Scholar
  22. 22.
    Q. Zhang, W. Li, L.P. Wen, J. Chen, Y. Xia, Chem. Eur. J. 16, 10234 (2010)CrossRefGoogle Scholar
  23. 23.
    T.B. Hoang, J. Huang, M.H. Mikkelsen, J. Vis. Exp. 111, e53876 (2016)Google Scholar
  24. 24.
    A. Rose, T.B. Hoang, F. McGuire, J.J. Mock, C. Ciraci, D.R. Smith, M.H. Mikkelsen, Nano Lett. 14, 4797 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    R. Pate, K.R. Lantz, A.D. Stiff-Roberts, IEEE J. Sel. Top. Quantum Electron. 14, 1022 (2008)CrossRefGoogle Scholar
  26. 26.
    W. Ge, R.D. McCormick, G. Nyikayaramba, A.D. Stiff-Roberts, Appl. Phys. Lett. 104, 223901 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    R. Pate, A.D. Stiff-Roberts, Chem. Phys. Lett. 477, 406 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    G.M. Hale, M.R. Querry, Appl. Opt. 12, 555 (1973)ADSCrossRefGoogle Scholar
  29. 29.
    E. Leveugle, L.V. Zhigilei, J. Appl. Phys. 102, 074914 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    D.D. Evanoff Jr., G. Chumanov, ChemPhysChem 6, 1221 (2005)CrossRefGoogle Scholar
  31. 31.
    S.W. Baek, J. Noh, C.H. Lee, B. Kim, M.K. Seo, J.Y. Lee, Sci. Rep. 3, 1726 (2013)ADSGoogle Scholar
  32. 32.
    F.X. Xie, W.C.H. Choy, C.C.D. Wang, W.E.I. Sha, D.D.S. Fung, Appl. Phys. Lett. 99, 153304 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wangyao Ge
    • 1
  • Thang B. Hoang
    • 2
    • 3
  • Maiken H. Mikkelsen
    • 1
    • 2
    • 3
  • Adrienne D. Stiff-Roberts
    • 1
  1. 1.Department of Electrical and Computer EngineeringDuke UniversityDurhamUSA
  2. 2.Department of PhysicsDuke UniversityDurhamUSA
  3. 3.Center for Metamaterials and Integrated PlasmonicsDuke UniversityDurhamUSA

Personalised recommendations