Skip to main content
Log in

Enhancing the efficiency of luminescent solar concentrators (LSCs)

  • Published:
Applied Physics A Aims and scope Submit manuscript

An Erratum to this article was published on 10 March 2017

Abstract

Recent developments in the endeavor to enhance the efficiency of luminescent solar concentrators (LSCs) are presented in this paper along with an analysis of LSC devices. In recent years, several experimental and numerical research works have been carried out to improve the performance of LSCs in different ways. LSCs date back to the 1970s and comprise an extremely interesting notion of solar cells for various reasons. First, LSCs are cost-competitive and function in diffuse light, and as such, it is not necessary to use expensive solar tracking devices. Second, luminescence facilitates the cells to gather only cold light, which results in higher PV efficiency. LSCs generally consist of transparent polymer sheets doped with luminescent species. The luminescent species absorb incident sunlight and emit it with high quantum efficiency, such that the emitted light is trapped in the sheet and travels to the edges where the solar cells can collect it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Aklalouch, A. Calleja, X. Granados, S. Ricart, V. Boffa, F. Ricci, T. Puig, X. Obradors, Hybrid sol–gel layers containing CeO2 nanoparticles as UV-protection of plastic lenses for concentrated photovoltaics. Sol. Energy Mater. Sol. Cells 120(Part A), 175 (2014)

    Article  Google Scholar 

  2. A.A. Al-Ghamdi, E.M. Mahrous, A.M. Al-Enizi, A. Azam, Preparation and characterization of pyrromethene-567 dye-doped polymer samples using gamma irradiation polymerization method (GIPM). J. Lumin. 157, 310 (2015)

    Article  Google Scholar 

  3. S. Chandra, J. Doran, S.J. McCormack, M. Kennedy, A.J. Chatten, Enhanced quantum dot emission for luminescent solar concentrators using plasmonic interaction. Sol. Energy Mater. Sol. Cells 98, 385 (2012)

    Article  Google Scholar 

  4. D. Chemisana, Building integrated concentrating photovoltaics: a review. Renew. Sustain. Energy Rev. 15(1), 603 (2011)

    Article  Google Scholar 

  5. B. Fisher, J. Biddle, Luminescent spectral splitting: efficient spatial division of solar spectrum at low concentration. Sol. Energy Mater. Sol. Cells 95(7), 1741 (2011)

    Article  Google Scholar 

  6. Z. Krumer, S.J. Pera, R.J.A. van Dijk-Moes, Y. Zhao, A.F.P. de Brouwer, E. Groeneveld, W.G.J.H.M. van Sark, R.E.I. Schropp, C. de Mello Donegá, Tackling self-absorption in luminescent solar concentrators with type-II colloidal quantum dots. Sol. Energy Mater. Sol. Cells 111, 57 (2013)

    Article  Google Scholar 

  7. N. Aste, L.C. Tagliabue, C. Del Pero, D. Testa, R. Fusco, Performance analysis of a large-area luminescent solar concentrator module. Renew. Energy 76, 330 (2015)

    Article  Google Scholar 

  8. Y. Zhang, S. Sun, R. Kang, J. Zhang, N. Zhang, W. Yan, W. Xie, J. Ding, J. Bao, C. Gao, Polymethylmethacrylate-based luminescent solar concentrators with bottom-mounted solar cells. Energy Convers. Manag. 95, 187 (2015)

    Article  Google Scholar 

  9. P.T.M. Albers, C.W.M. Bastiaansen, M.G. Debije, Dual waveguide patterned luminescent solar concentrators. Sol. Energy 95, 216 (2013)

    Article  ADS  Google Scholar 

  10. G.J.H.M. van Sark Wilfried, K.W.J. Barnham, L.H. Slooff, A.J. Chatten, A. Büchtemann, A. Meyer, S.J. McCormack, R. Koole, D.J. Farrell, R. Bose, E.E. Bende, A.R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. De Mello Donegá, A. Meijerink, D. Vanmaekelbergh, Luminescent solar concentrators—a review of recent results. Opt. Soc. Am. 16(26), 21773 (2008)

    Google Scholar 

  11. A.A. Earp, J.B. Franklin, G.B. Smith, Absorption tails and extinction in luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 95(4), 1157 (2011)

    Article  Google Scholar 

  12. M.H. Keefe, K.D. Benkstein, J.T. Hupp, Luminescent sensor molecules based on coordinated metals: a review of recent developments. Coord. Chem. Rev. 205, 201 (2000)

    Article  Google Scholar 

  13. A.M. Hermann, Luminescent solar concentrators—a review. Sol. Energy 29(4), 323 (1982)

    Article  ADS  Google Scholar 

  14. N. Agnihotri, Computational studies of charge transfer in organic solar photovoltaic cells: a review. J. Photochem. Photobiol. C 18, 18 (2014)

    Article  Google Scholar 

  15. S.J. Gallagher, P.C. Eames, B. Norton, Quantum dot solar concentrator behaviour, predicted using a ray trace approach. J. Ambient Energy 25(1), 47 (2004)

    Article  Google Scholar 

  16. U. Rau, F. Einsele, G.C. Glaeser, Efficiency limits of photovoltaic fluorescent collectors. Appl. Phys. Lett. 87(17), 171101 (2005)

    Article  ADS  Google Scholar 

  17. J. Lambe, W.H. Weber, Luminescent greenhouse collector for solar radiation. Appl. Opt. 15(10), 2299 (1976)

    Article  ADS  Google Scholar 

  18. A. Greubel, W. Greube, Solar energy conversion with fluorescent concentrators. Appl. Phys. 14, 123 (1977)

    ADS  Google Scholar 

  19. A. Goetzberger, Fluorescent solar energy collectors: operating conditions with diffuse light. Appl. Phys. 16(4), 399 (1978)

    Article  ADS  Google Scholar 

  20. V. Wittwer, A. Zastrow, Daylighting with fluorescent concentrators and highly reflective silver-coated plastic films: a new application for new materials, in Optical Materials Technology (1986)

  21. V. Wittwer, W. Stahl, A. Goetzberger, Fluorescent planar concentrators. Sol. Energy Mater. 11(3), 187 (1984)

    Article  Google Scholar 

  22. K. Barnham, J.L. Marques, J. Hassard, P. O’Brien, Quantum-dot concentrator and thermodynamic model for the global redshift. Appl. Phys. 76(9), 1197 (2000)

    ADS  Google Scholar 

  23. A.P. de Silva, T. Gunnlaugsson, T.E. Rice, Recent evolution of luminescent photoinduced electron transfer sensors. A review. Analyst 121(12), 1759 (1996)

    Article  ADS  Google Scholar 

  24. V. Sholin, J.D. Olson, S.A. Carter, Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting. J. Appl. Phys. 101(12), 123114 (2007)

    Article  ADS  Google Scholar 

  25. W.G.J.H.M. van Sark, Luminescent solar concentrators—a low cost photovoltaics alternative. Renew. Energy 49, 207 (2013)

    Article  Google Scholar 

  26. A.-L. Joudrier, F. Proise, R. Grapin, J.-L. Pelouard, J.-F. Guillemoles, Modeling and fabrication of luminescent solar concentrators towards photovoltaic devices. Energy Procedia 60, 173 (2014)

    Article  Google Scholar 

  27. J. Bomm, A. Büchtemann, A.J. Chatten, R. Bose, D.J. Farrell, N.L.A. Chan, Y. Xiao, L.H. Slooff, T. Meyer, A. Meyer, W.G.J.H.M. van Sark, R. Koole, Fabrication and full characterization of state-of-the-art quantum dot luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 95(8), 2087 (2011)

    Article  Google Scholar 

  28. A. Greubel, W. Greube, Solar energy conversion with fluorescent collectors. Appl. Phys. 14, 123 (1977)

    ADS  Google Scholar 

  29. V. Wittwer, W. Stahl, A. Goetzberger, Fluorescent planar concentrators. Sol. Energy Mater. 11(3), 187 (1984)

    Article  Google Scholar 

  30. T. Trupke, M. Green, P. Würfel, Improving solar cell efficiencies by down-conversion of high-energy photons. J. Appl. Phys. 92(3), 1668 (2002)

    Article  ADS  Google Scholar 

  31. S.M. El-Bashir, F.M. Barakat, M.S. AlSalhi, Metal-enhanced fluorescence of mixed coumarin dyes by silver and gold nanoparticles: towards plasmonic thin-film luminescent solar concentrator. J. Lumin. 143, 43 (2013)

    Article  Google Scholar 

  32. M.G. Debije, P.P.C. Verbunt, Thirty years of luminescent solar concentrator research: solar energy for the built environment. Adv. Energy Mater. 2(1), 12 (2012)

    Article  Google Scholar 

  33. X. Wang, T. Wang, X. Tian, L. Wang, W. Wu, Y. Luo, Q. Zhang, Europium complex doped luminescent solar concentrators with extended absorption range from UV to visible region. Sol. Energy 85(9), 2179 (2011)

    Article  ADS  Google Scholar 

  34. T. Wang, J. Zhang, W. Ma, Y. Luo, L. Wang, Z. Hu, W. Wu, X. Wang, G. Zou, Q. Zhang, Luminescent solar concentrator employing rare earth complex with zero self-absorption loss. Sol. Energy 85(11), 2571 (2011)

    Article  ADS  Google Scholar 

  35. M.V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D.V. Talapin, C.R. Kagan, V.I. Klimov, A.L. Rogach, P. Reiss, D.J. Milliron, Prospects of nanoscience with nanocrystals. ACS Nano 9(2), 1012 (2015)

    Article  Google Scholar 

  36. J.W.E. Wiegman, E. van der Kolk, Building integrated thin film luminescent solar concentrators: detailed efficiency characterization and light transport modelling. Sol. Energy Mater. Sol. Cells 103, 41 (2012)

    Article  Google Scholar 

  37. M. Rüdiger, S. Fischer, J. Frank, A. Ivaturi, B.S. Richards, K.W. Krämer, M. Hermle, J.C. Goldschmidt, Bifacial n-type silicon solar cells for upconversion applications. Sol. Energy Mater. Sol. Cells 128, 57 (2014)

    Article  Google Scholar 

  38. N. Aste, L.C. Tagliabue, P. Palladino, D. Testa, Integration of a luminescent solar concentrator: effects on daylight, correlated color temperature, illuminance level and color rendering index. Sol. Energy 114, 174 (2015)

    Article  ADS  Google Scholar 

  39. P.P.C. Verbunt, M.G. Debjie, Progress in luminescent solar concentrator research: solar energy for the built environment, in World Renewable Energy (2011)

  40. E. Klampaftis, D. Ross, K.R. McIntosh, B.S. Richards, Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review. Sol. Energy Mater. Sol. Cells 93(8), 1182 (2009)

    Article  Google Scholar 

  41. N. Asim, K. Sopian, S. Ahmadi, K. Saeedfar, M. Alghoul, O. Saadatian, S.H. Zaidi, A review on the role of materials science in solar cells. Renew. Sustain. Energy Rev. 16(8), 5834 (2012)

    Article  Google Scholar 

  42. H. Baig, N. Sellami, T.K. Mallick, Performance modeling and testing of a building integrated concentrating photovoltaic (BICPV) system. Sol. Energy Mater. Sol. Cells 134, 29 (2015)

    Article  Google Scholar 

  43. L.Z. Broderick, B.R. Albert, B.S. Pearson, L.C. Kimerling, J. Michel, Design for energy: modeling of spectrum, temperature and device structure dependences of solar cell energy production. Sol. Energy Mater. Sol. Cells 136, 48 (2015)

    Article  Google Scholar 

  44. H. Baig, K.C. Heasman, T.K. Mallick, Non-uniform illumination in concentrating solar cells. Renew. Sustain. Energy Rev. 16(8), 5890 (2012)

    Article  Google Scholar 

  45. C. Corrado, S.W. Leow, M. Osborn, E. Chan, B. Balaban, S.A. Carter, Optimization of gain and energy conversion efficiency using front-facing photovoltaic cell luminescent solar concentrator design. Sol. Energy Mater. Sol. Cells 111, 74 (2013)

    Article  Google Scholar 

  46. M. Peng, X. Yu, X. Cai, Q. Yang, H. Hu, K. Yan, H. Wang, B. Dong, F. Zhu, D. Zou, Waveguide fiber dye-sensitized solar cells. Nano Energy 10, 117 (2014)

    Article  Google Scholar 

  47. O.Z. Sharaf, M.F. Orhan, Concentrated photovoltaic thermal (CPVT) solar collector systems: part I—fundamentals, design considerations and current technologies. Renew. Sustain. Energy Rev. 50, 1500 (2015)

    Article  Google Scholar 

  48. O.Z. Sharaf, M.F. Orhan, Concentrated photovoltaic thermal (CPVT) solar collector systems: part II—implemented systems, performance assessment, and future directions. Renew. Sustain. Energy Rev. 50, 1566 (2014)

    Article  Google Scholar 

  49. Y.S. Lim, C.K. Lo, S.Y. Kee, H.T. Ewe, A.R. Faidz, Design and evaluation of passive concentrator and reflector systems for bifacial solar panel on a highly cloudy region—a case study in Malaysia. Renew. Energy 63, 415 (2014)

    Article  Google Scholar 

  50. G. Griffini, M. Levi, S. Turri, Thin-film luminescent solar concentrators: a device study towards rational design. Renew. Energy 78, 288 (2015)

    Article  Google Scholar 

  51. J.J. Huang, Z.F. Zhong, M.Z. Rong, X. Zhou, X.D. Chen, M.Q. Zhang, An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency. Carbon 70, 190 (2014)

    Article  Google Scholar 

  52. G. Maggioni, A. Campagnaro, S. Carturan, A. Quaranta, Dye-doped parylene-based thin film materials: application to luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 108, 27 (2013)

    Article  Google Scholar 

  53. S. Mahamuda, K. Swapna, M. Venkateswarlu, A. Srinivasa Rao, S. Shakya, G. Vijaya Prakash, Spectral characterisation of Sm3+ ions doped Oxy-fluoroborate glasses for visible orange luminescent applications. J. Lumin. 154, 410 (2014)

    Article  Google Scholar 

  54. S. Mahlik, A. Lazarowska, M. Grinberg, J.P.R. Wells, M.F. Reid, Luminescence properties of MgF2:Yb2+ at high hydrostatic pressure. J. Lumin. 169, 788 (2015)

    Article  Google Scholar 

  55. T.S. Parel, C. Pistolas, L. Danos, T. Markvart, Modelling and experimental analysis of the angular distribution of the emitted light from the edge of luminescent solar concentrators. Opt. Mater. 42, 532 (2015)

    Article  ADS  Google Scholar 

  56. Y. Wu, S. Ren, X. Xu, L. Liu, H. Wang, J. Yu, Engineered fluorescence of quantum dots via plasmonic nanostructures. Sol. Energy Mater. Sol. Cells 126, 113 (2014)

    Article  Google Scholar 

  57. B. Balaban, S. Doshay, M. Osborn, Y. Rodriguez, S.A. Carter, The role of FRET in solar concentrator efficiency and color tunability. J. Lumin. 146, 256 (2014)

    Article  Google Scholar 

  58. N. Yeh, P. Yeh, Organic solar cells: their developments and potentials. Renew. Sustain. Energy Rev. 21, 421 (2013)

    Article  Google Scholar 

  59. S.M. El-Bashir, Photophysical properties of fluorescent PMMA/SiO2 nanohybrids for solar energy applications. J. Lumin. 132(7), 1786 (2012)

    Article  Google Scholar 

  60. G. Griffini, M. Levi, S. Turri, Novel crosslinked host matrices based on fluorinated polymers for long-term durability in thin-film luminescent solar concentrators. Sol. Energy Mater. Sol. Cells 118, 36 (2013)

    Article  Google Scholar 

  61. L. Marin, A. Zabulica, I.-A. Moleavin, Luminescent guest–host composite films based on an azomethine dye in different matrix polymers. Opt. Mater. 38, 290 (2014)

    Article  ADS  Google Scholar 

  62. F.D. Martinez-Mancera, J.L. Hernandez-Lopez, Physical characterization and photoluminescence properties of thioglycolic acid-stabilized lead sulfide nanocrystals. Mater. Chem. Phys. 148(3), 1045 (2014)

    Article  Google Scholar 

  63. Y. Chen, Q. Tao, W. Fu, H. Yang, X. Zhou, Y. Zhang, S. Su, P. Wang, M. Li, Enhanced solar cell efficiency and stability using ZnS passivation layer for CdS quantum-dot sensitized actinomorphic hexagonal columnar ZnO. Electrochim. Acta 118, 176 (2014)

    Article  Google Scholar 

  64. A. Kerrouche, D.A. Hardy, D. Ross, B.S. Richards, Luminescent solar concentrators: from experimental validation of 3D ray-tracing simulations to coloured stained-glass windows for BIPV. Sol. Energy Mater. Sol. Cells 122, 99 (2014)

    Article  Google Scholar 

  65. G. Griffini, M. Levi, S. Turri, Novel high-durability luminescent solar concentrators based on fluoropolymer coatings. Prog. Org. Coat. 77(2), 528 (2014)

    Article  Google Scholar 

  66. G. Griffini, L. Brambilla, M. Levi, M. Del Zoppo, S. Turri, Photo-degradation of a perylene-based organic luminescent solar concentrator: molecular aspects and device implications. Sol. Energy Mater. Sol. Cells 111, 41 (2013)

    Article  Google Scholar 

  67. J. Garcia-Torres, P. Bosch-Jimenez, E. Torralba-Calleja, M. Kennedy, H. Ahmed, J. Doran, D. Gutierrez-Tauste, L. Bautista, M. Della Pirriera, Highly efficient luminescent materials: influence of the matrix on the photophysical properties of Eu(III) complex/polymer hybrids. J. Photochem. Photobiol. A 283, 8 (2014)

    Article  Google Scholar 

  68. J. Garcia-Torres, P. Bosch-Jimenez, E. Torralba-Calleja, M. Kennedy, H. Ahmed, J. Doran, D. Gutierrez-Tauste, L. Bautista, M. Della Pirriera, Modulating the photoluminescence of europium-based emitting polymers: influence of the matrix on the photophysical properties. J. Photochem. Photobiol. A 275, 103 (2014)

    Article  Google Scholar 

  69. B. Vishwanathan, A.H.M.E. Reinders, D.K.G. de Boer, L. Desmet, A.J.M. Ras, F.H. Zahn, M.G. Debije, A comparison of performance of flat and bent photovoltaic luminescent solar concentrators. Sol. Energy 112, 120 (2015)

    Article  ADS  Google Scholar 

  70. L.R. Bradshaw, K. Knowles, S. McDowall, D.R. Gamelin, Nanocrystals for luminescent solar concentrators. Nano Lett. 15(2), 1315 (2015)

    Article  ADS  Google Scholar 

  71. I. Coropceanu, M.G. Bawendi, Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency. Nano Lett. 14(7), 4097 (2014)

    Article  ADS  Google Scholar 

  72. F. Bella, G. Griffini, M. Gerosa, S. Turri, R. Bongiovanni, Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings. J. Power Sources 283, 195 (2015)

    Article  ADS  Google Scholar 

  73. A. Boccolini, J. Marques-Hueso, D. Chen, Y. Wang, B.S. Richards, Physical performance limitations of luminescent down-conversion layers for photovoltaic applications. Sol. Energy Mater. Sol. Cells 122, 8 (2014)

    Article  Google Scholar 

  74. N.D. Bronstein, R.G. Nuzzo, L. Li, L. Xu, Y. Yao, V.E. Ferry, A.P. Alivisatos, R.G. Nuzzo, Luminescent solar concentration with semiconductor nanorods and transfer-printed micro-silicon solar cells. ASC Nano 8(1), 44 (2014)

    Article  Google Scholar 

  75. M.H. Wan, P.S. Wong, R. Hussin, H.O. Lintang, S. Endud, Structural and luminescence properties of Mn2+ ions doped calcium zinc borophosphate glasses. J. Alloys Compd. 595, 39 (2014)

    Article  Google Scholar 

  76. C. Lamnatou, D. Chemisana, Solar radiation manipulations and their role in greenhouse claddings: fluorescent solar concentrators, photoselective and other materials. Renew. Sustain. Energy Rev. 27, 175 (2013)

    Article  Google Scholar 

  77. S.K.W. MacDougall, A. Ivaturi, J. Marques-Hueso, K.W. Krämer, B.S. Richards, Broadband photoluminescent quantum yield optimisation of Er3+-doped β-NaYF4 for upconversion in silicon solar cells. Sol. Energy Mater. Sol. Cells 128, 18 (2014)

    Article  Google Scholar 

  78. R.W. MacQueen, T.W. Schmidt, Molecular polarization switching for improved light coupling in luminescent solar concentrators. J. Phys. Chem. Lett. 4(17), 2874 (2013)

    Article  Google Scholar 

  79. A.M. Mooney, K.E. Warner, P.J. Fontecchio, Y.-Z. Zhang, B.P. Wittmershaus, Photodegradation in multiple-dye luminescent solar concentrators. J. Lumin. 143, 469 (2013)

    Article  Google Scholar 

  80. E. Moretti, A. Talon, L. Storaro, A. Le Donne, S. Binetti, A. Benedetti, S. Polizzi, Concentration quenching and photostability in Eu(dbm)3phen embedded in mesoporous silica nanoparticles. J. Lumin. 146, 178 (2014)

    Article  Google Scholar 

  81. V. Paraskeva, M. Norton, M. Hadjipanayi, M. Pravettoni, G.E. Georghiou, Luminescent emission of multi-junction InGaP/InGaAs/Ge PV cells under high intensity irradiation. Sol. Energy Mater. Sol. Cells 134, 175 (2015)

    Article  Google Scholar 

  82. G. Venkataiah, C.K. Jayasankar, K. VenkataKrishnaiah, P. Dharmaiah, N. Vijaya, Concentration dependent luminescence properties of Sm3+-ions in tellurite–tungsten–zirconium glasses. Opt. Mater. 40, 26 (2015)

    Article  Google Scholar 

  83. Y. Shen, Y. Jia, X. Sheng, L. Shen, J.A. Rogers, N.C. Giebink, Nonimaging optical gain in luminescent concentration through photonic control of emission étendue. ACS Photonics 1(8), 746 (2014)

    Article  Google Scholar 

  84. B.C. Rowan, L.R. Wilson, B.S. Richards, Advanced material concepts for luminescent solar concentrators. IEEE J. Sel. Top. Quantum Electron. 14(5), 1312 (2008)

    Article  Google Scholar 

  85. E.D. Kosten, J.H. Atwater, J. Parsons, A. Polman, H.A. Atwater, Highly efficient GaAs solar cells by limiting light emission angle. Sci. Appl. 2(45), 2047 (2013)

    Google Scholar 

  86. D.J. Farrell, M. Yoshida, Operating regimes for second generation luminescent solar concentrators. Prog. Photovolt. Res. Appl. 20(1), 93 (2012)

    Article  Google Scholar 

  87. M.D. Hughes, C. Maher, D.-A. Borca-Tasciuc, D. Polanco, D. Kaminski, Performance comparison of wedge-shaped and planar luminescent solar concentrators. Renew. Energy 52, 266 (2013)

    Article  Google Scholar 

  88. V.A. Rajkumar, C. Weijers, M.G. Debije, Distribution of absorbed heat in luminescent solar concentrator lightguides and effect on temperatures of mounted photovoltaic cells. Renew. Energy 80, 308 (2015)

    Article  Google Scholar 

  89. S.M. El-Bashir, O.A. AlHarbi, M.S. AlSalhi, Optimal design for extending the lifetime of thin film luminescent solar concentrators. Opt. Int. J. Light Electron Opt. 125(18), 5268 (2014)

    Article  Google Scholar 

  90. L.R. Bradshaw, K.E. Knowles, S. McDowall, D.R. Gamelin, Nanocrystals for luminescent solar concentrators. Nano Lett. 15(2), 1315 (2015)

    Article  ADS  Google Scholar 

  91. T. Markvart, Detailed balance method for ideal single-stage fluorescent collectors. J. Appl. Phys. 99(2), 026101 (2006)

    Article  ADS  Google Scholar 

  92. C. Lamnatou, J.D. Mondol, D. Chemisana, C. Maurer, Modelling and simulation of building-integrated solar thermal systems: behaviour of the system. Renew. Sustain. Energy Rev. 45, 36 (2015)

    Article  Google Scholar 

  93. C.S. Erickson, L.R. Bradshaw, S. McDowall, J.D. Gilbertson, D.R. Gamelin, D.L. Patrick, Zero-reabsorption doped-nanocrystal luminescent solar concentrators. ACS Nano 8(4), 3461 (2014)

    Article  Google Scholar 

  94. F. Meinardi, A. Colombo, K.A. Velizhanin, R. Simonutti, M. Lorenzon, L. Beverina, R. Viswanatha, V.I. Klimov, S. Brovelli, Large-area luminescent solar concentrators based on/Stokes-shift-engineered/’nanocrystals in a mass-polymerized PMMA matrix. Nat. Photonics 8(5), 392 (2014)

    Article  ADS  Google Scholar 

  95. Y.K. Liao, M. Brossard, D.H. Hsieh, T.N. Lin, M.D. Charlton, S.J. Cheng, C.H. Chen, J.L. Shen, L.T. Cheng, T.P. Hsieh, Highly efficient flexible hybrid nanocrystal-Cu (In, Ga) Se2 (CIGS) solar cells. Adv. Energy Mater. 5(2), 80 (2015)

    Article  Google Scholar 

  96. R. Inman, G. Shcherbatyuk, D. Medvedko, A. Gopinathan, S. Ghosh, Cylindrical luminescent solar concentrators with near-infrared quantum dots. Opt. Express 19(24), 24308 (2011)

    Article  ADS  Google Scholar 

  97. F. Purcell-Milton, Y.K. Gun’ko, Quantum dots for luminescent solar concentrators. J. Mater. Chem. 22(33), 16687 (2012)

    Article  Google Scholar 

  98. H. Lin, P. Xie, Y. Liu, X. Zhou, B. Li, Tuning luminescence and reducing reabsorption of CdSe quantum disks for luminescent solar concentrators. Nanotechnology 26(33), 335401 (2015)

    Article  ADS  Google Scholar 

  99. I. Rousseau, V. Wood, Nanophotonic luminescent solar concentrators. Appl. Phys. Lett. 103(13), 131113 (2013)

    Article  ADS  Google Scholar 

  100. F. Sgrignuoli, P. Ingenhoven, G. Pucker, V. Mihailetchi, E. Froner, Y. Jestin, E. Moser, G. Sànchez, L. Pavesi, Purcell effect and luminescent downshifting in silicon nanocrystals coated back-contact solar cells. Sol. Energy Mater. Sol. Cells 132, 267 (2015)

    Article  Google Scholar 

  101. R. Beaulac, P.I. Archer, J. van Rijssel, A. Meijerink, D.R. Gamelin, Exciton storage by Mn2+ in colloidal Mn2+-doped CdSe quantum dots. Nano Lett. 8(9), 2949 (2008)

    Article  ADS  Google Scholar 

  102. M.S. Kang, A. Sahu, C.D. Frisbie, D.J. Norris, Influence of silver doping on electron transport in thin films of PbSe nanocrystals. Adv. Mater. 25(5), 725 (2013)

    Article  Google Scholar 

  103. S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S.V. Kershaw, H. Fu, Z. Fan, E.C. Kwok, C.-F. Wang, W.Y. Teoh, Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells. J. Phys. Chem. C 118(30), 16393 (2014)

    Article  Google Scholar 

  104. Y. Zhao, F.T. Rabouw, T.V. Puffelen, C.A.V. Walree, D.R. Gamelin, C. de Mello Donegá, A. Meijerink, Lanthanide-doped CaS and SrS luminescent nanocrystals: a single-source precursor approach for doping. J. Am. Chem. Soc. 136(47), 16533 (2014)

    Article  Google Scholar 

  105. P.F. Smet, I. Moreels, Z. Hens, D. Poelman, Luminescence in sulfides: a rich history and a bright future. Materials 3(4), 2834 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hanaei.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00339-017-0851-3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assadi, M.K., Hanaei, H., Mohamed, N.M. et al. Enhancing the efficiency of luminescent solar concentrators (LSCs). Appl. Phys. A 122, 821 (2016). https://doi.org/10.1007/s00339-016-0359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0359-2

Keywords

Navigation