Skip to main content
Log in

Effects of liquid properties on the dynamics of under-liquid laser-induced shock process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We compared the shock processes induced when focusing a single laser pulse (1064 nm, FWHM = 13 ns) onto the surface of epoxy resin blocks immersed in glycerol, water, liquid paraffin, and silicone oils. A custom-designed time-resolved photoelasticity imaging technique was applied to observe the strength of stress wave induced inside the solid target and the propagation of shock waves in the liquid with time resolution of nanoseconds. We demonstrated that the shock impedance of the liquid caused a noticeable effect on the strength of laser-induced stress wave: Ablation in the liquid with a higher shock impedance resulted in a stronger stress. By using glycerol instead of water as the confining medium, the pulse energy required to induce a certain level of stress was reduced by about 20 %. The dynamical behaviors of the main shock wave and the reflected wave in inverted V-shape in each liquid are also discussed in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Kruusing, Opt. Lasers Eng. 41, 307 (2004)

    Article  Google Scholar 

  2. A. De Giacomo, M. Dell’Aglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G.C. Messina, G. Compagnini, S. Barcikowski, Phys. Chem. Chem. Phys. 15, 3083 (2013)

    Article  Google Scholar 

  3. R.K. Thareja, S. Shukla, Appl. Surf. Sci. 253, 8889 (2007)

    Article  ADS  Google Scholar 

  4. A. Nath, A. Khare, J. Appl. Phys. 110, 043111 (2011)

    Article  ADS  Google Scholar 

  5. W.T. Nichols, T. Sasaki, N. Koshizaki, J. Appl. Phys. 100, 114913 (2006)

    Article  ADS  Google Scholar 

  6. G. Yang, Prog. Mater Sci. 52, 648 (2007)

    Article  Google Scholar 

  7. V. Amendola, S. Polizzi, M. Meneghetti, J. Phys. Chem. B 110, 7232 (2006)

    Article  Google Scholar 

  8. V. Amendola, S. Polizzi, M. Meneghetti, Langmuir 23, 6766 (2007)

    Article  Google Scholar 

  9. V.S. Burakov, A.V. Butsen, N.V. Tarasenko, J. Appl. Spectrosc. 77, 386 (2010)

    Article  ADS  Google Scholar 

  10. S.M. O’Malley, B. Zinderman, J. Schoeffling, R. Jimenez, J.J. Naddeo, D.M. Bubb, Chem. Phys. Lett. 615, 30 (2014)

    Article  ADS  Google Scholar 

  11. T. Kovalchuk, G. Toker, V. Bulatov, I. Schechter, Chem. Phys. Lett. 500, 242 (2010)

    Article  ADS  Google Scholar 

  12. T.T.P. Nguyen, R. Tanabe, Y. Ito, Appl. Phys. Express 6, 122701 (2013)

    Article  ADS  Google Scholar 

  13. T.T.P. Nguyen, R. Tanabe, Y. Ito, Appl. Phys. A 116, 1109 (2013)

    Article  ADS  Google Scholar 

  14. T.T.P. Nguyen, R. Tanabe, Y. Ito, Appl. Phys. Lett. 102, 124103 (2013)

    Article  ADS  Google Scholar 

  15. L. Martí-López, R. Ocaña, J.A. Porro, M. Morales, J.L. Ocaña, Appl. Opt. 48, 3671 (2009)

    Article  ADS  Google Scholar 

  16. J. Lubbers, R. Graaff, Ultrasound Med. Biol. 24, 1065 (1998)

    Article  Google Scholar 

  17. W. Benenson, J.W. Harris, H. Stocker, H. Lutz (eds.), Handbook of Physics (Springer, New York, 2002)

    Google Scholar 

  18. Shin-Etsu chemical Co., Ltd, KF-96 Performance Test Result. http://www.silicone.jp/e/catalog/pdf/kf96_e.pdf

  19. B.D. Strycker, M.M. Springer, A.J. Traverso, A.A. Kolomenskii, G.W. Kattawar, A.V. Sokolov, Opt. Express 21, 23772 (2013)

    Article  ADS  Google Scholar 

  20. Y. Zhang, Y. Gu, X. Zhang, J. Shi, J. Zhou, J. Appl. Phys. 100, 103517 (2006)

    Article  ADS  Google Scholar 

  21. L. Berthe, R. Fabbro, P. Peyre, L. Tollier, E. Bartnicki, J. Appl. Phys. 82, 2826 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research, 22360060, from the Japan Society for the Promotion of Science and by a Grant from the Amada Foundation for Metal Work Technology, AF-2009217.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiro Ito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T.P., Tanabe, R. & Ito, Y. Effects of liquid properties on the dynamics of under-liquid laser-induced shock process. Appl. Phys. A 122, 830 (2016). https://doi.org/10.1007/s00339-016-0358-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0358-3

Keywords

Navigation