Skip to main content
Log in

Free vibration of symmetric and sigmoid functionally graded nanobeams

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The objective of this paper was the investigation of vibration characteristics of both nonlinear symmetric power and sigmoid functionally graded nonlocal nanobeams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by sigmoid law distribution and symmetric power function. Structures with symmetric distribution with mid-plane such as ceramic–metal–ceramic and metal–ceramic–metal are proposed. Nonlocal differential Eringen’s elasticity is exploited to incorporate size dependency of nanobeam. The kinematic relations of Euler–Bernoulli beam are proposed, with the assumption of a small strain. A nonlocal equation of motion of nanobeam is derived by using principle of virtual work and then discretized by finite element method to obtain numerical solution. Numerical results show the effects of the function distribution, gradient index and nonlocal parameter on natural frequencies of macro- and nanobeam. This model is helpful in the mechanical design of nanoelectromechanical systems manufactured from FGM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Agwa, M.A. Eltaher, Vibration of a carbyne nanomechanical mass sensor with surface effect. Appl. Phys. A 122(4), 1–8 (2016)

    Article  Google Scholar 

  2. M. Ahouel, M.S.A. Houari, E.A. Bedia, A. Tounsi, Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept. Steel Compos. Struct. 20(5), 963–981 (2016)

    Article  Google Scholar 

  3. A.E. Alshorbagy, M.A. Eltaher, F.F. Mahmoud, Free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model. 35(1), 412–425 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. H.A. Atmane, A. Tounsi, S.A. Meftah, H.A. Belhadj, Free vibration behavior of exponential functionally graded beams with varying cross-section. J. Vib. Control 17(2), 311–318 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Z. Belabed, M.S.A. Houari, A. Tounsi, S.R. Mahmoud, O.A. Bég, An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos. Part B Eng. 60, 274–283 (2014)

    Article  Google Scholar 

  6. H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, A. Tounsi, Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. J. Braz. Soc. Mech. Sci. Eng. 38(1), 265–275 (2016)

    Article  Google Scholar 

  7. S. Benguediab, A. Tounsi, M. Zidour, A. Semmah, Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Compos. Part B Eng. 57, 21–24 (2014)

    Article  Google Scholar 

  8. M. Bennoun, M.S.A. Houari, A. Tounsi, A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech. Adv. Mater. Struct. 23(4), 423–431 (2016)

    Article  Google Scholar 

  9. S. Ben-Oumrane, T. Abedlouahed, M. Ismail, B.B. Mohamed, M. Mustapha, A.B. El Abbas, A theoretical analysis of flexional bending of Al/Al 2 O 3 S-FGM thick beams. Comput. Mater. Sci. 44(4), 1344–1350 (2009)

    Article  Google Scholar 

  10. A. Besseghier, H. Heireche, A.A. Bousahla, A. Tounsi, A. Benzair, Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix. Adv. Nano Res. 3(1), 29–37 (2015)

    Article  Google Scholar 

  11. F. Bounouara, K.H. Benrahou, I. Belkorissat, A. Tounsi, A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos. Struct. 20(2), 227–249 (2016)

    Article  Google Scholar 

  12. B. Bouderba, M.S.A. Houari, A. Tounsi, Thermomechanical bending response of FGM thick plates resting on Winkler–Pasternak elastic foundations. Steel Compos. Struct. 14(1), 85–104 (2013)

    Article  Google Scholar 

  13. M. Bourada, A. Kaci, M.S.A. Houari, A. Tounsi, A new simple shear and normal deformations theory for functionally graded beams. Steel Compos. Struct. 18(2), 409–423 (2015)

    Article  Google Scholar 

  14. F.L. Chaht, A. Kaci, M.S.A. Houari, A. Tounsi, O.A. Beg, S.R. Mahmoud, Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos. Struct. 18(2), 425–442 (2015)

    Article  Google Scholar 

  15. S.H. Chi, Y.L. Chung, Cracking in sigmoid functionally graded coating. J. Mech. 18, 41–53 (2002)

    Google Scholar 

  16. F. Delale, F. Erdogan, The crack problem for a nonhomogeneous plane. J. Appl. Mech. 50(3), 609–614 (1983)

    Article  ADS  MATH  Google Scholar 

  17. N.D. Duc, P.H. Cong, Nonlinear dynamic response of imperfect symmetric thin sigmoid-functionally graded material plate with metal–ceramic–metal layers on elastic foundation. J. Vib. Control 21, 637–646 (2013)

    Article  Google Scholar 

  18. F. Ebrahimi, E. Salari, Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method. Compos. Part B Eng. 79, 156–169 (2015)

    Article  Google Scholar 

  19. F. Ebrahimi, M. Boreiry, Investigating various surface effects on nonlocal vibrational behavior of nanobeams. Appl. Phys. A 121(3), 1305–1316 (2015)

    Article  ADS  Google Scholar 

  20. F. Ebrahimi, M.R. Barati, Dynamic modeling of a thermo–piezo-electrically actuated nanosize beam subjected to a magnetic field. Appl. Phys. A 122(4), 1–18 (2016)

    Article  Google Scholar 

  21. M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Free vibration analysis of functionally graded size-dependent nanobeams. Appl. Math. Comput. 218(14), 7406–7420 (2012)

    MathSciNet  MATH  Google Scholar 

  22. M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct. 96, 82–88 (2013)

    Article  Google Scholar 

  23. M.A. Eltaher, A.E. Alshorbagy, F.F. Mahmoud, Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams. Compos. Struct. 99, 193–201 (2013)

    Article  Google Scholar 

  24. M.A. Eltaher, A.E. Alshorbagy, F.F. Mahmoud, Vibration analysis of Euler-Bernoulli nanobeams by using finite element method. Appl. Math. Model. 37(7), 4787–4797 (2013)

    Article  MathSciNet  Google Scholar 

  25. M.A. Eltaher, A. Khairy, A.M. Sadoun, F.A. Omar, Static and buckling analysis of functionally graded Timoshenko nanobeams. Appl. Math. Comput. 229, 283–295 (2014)

    MathSciNet  Google Scholar 

  26. M.A. Eltaher, A.A. Abdelrahman, A. Al-Nabawy, M. Khater, A. Mansour, Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position. Appl. Math. Comput. 235, 512–529 (2014)

    MathSciNet  MATH  Google Scholar 

  27. M.A. Eltaher, M.E. Khater, S.A. Emam, A review on nonlocal elastic models for bending, buckling, vibrations, and wave propagation of nanoscale beams. Appl. Math. Model. 40(5–6), 4109–4128 (2016)

    Article  MathSciNet  Google Scholar 

  28. M.A. Eltaher, S. El-Borgi, J.N. Reddy, Nonlinear analysis of size-dependent and material-dependent nonlocal CNTs. Compos. Struct. 153, 902–913 (2016)

    Article  Google Scholar 

  29. A.C. Eringen, Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  30. A.C. Eringen, D.G.B. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10(3), 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  31. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  ADS  Google Scholar 

  32. A. Fereidoon, A. Mohyeddin, Bending analysis of thin functionally graded plates using generalized differential quadrature method. Arch. Appl. Mech. 81(11), 1523–1539 (2011)

    Article  ADS  MATH  Google Scholar 

  33. S. Filiz, M. Aydogdu, Wave propagation analysis of embedded (coupled) functionally graded nanotubes conveying fluid. Compos. Struct. 132, 1260–1273 (2015)

    Article  Google Scholar 

  34. A. Hamidi, M.S.A. Houari, S.R. Mahmoud, A. Tounsi, A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates. Steel Compos. Struct. 18(1), 235–253 (2015)

    Article  Google Scholar 

  35. H. Hebali, A. Tounsi, M.S.A. Houari, A. Bessaim, E.A.A. Bedia, New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. J. Eng. Mech. 140(2), 374–383 (2014)

    Article  Google Scholar 

  36. S.A.H. Hosseini, O. Rahmani, Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model. Appl. Phys. A 122(3), 1–11 (2016)

    Article  Google Scholar 

  37. W.Y. Jung, S.C. Han, Analysis of sigmoid functionally graded material (S-FGM) nanoscale plates using the nonlocal elasticity theory. Math. Problems Eng. 49, 449–458 (2013)

    MathSciNet  MATH  Google Scholar 

  38. S. Kapuria, M. Bhattacharyya, A.N. Kumar, Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation. Compos. Struct. 82(3), 390–402 (2008)

    Article  Google Scholar 

  39. K. Kiani, Longitudinal and transverse instabilities of moving nanoscale beam-like structures made of functionally graded materials. Compos. Struct. 107, 610–619 (2014)

    Article  Google Scholar 

  40. M. Komijani, S.E. Esfahani, J.N. Reddy, Y.P. Liu, M.R. Eslami, Nonlinear thermal stability and vibration of pre/post-buckled temperature-and microstructure dependent functionally graded beams resting on elastic foundation. Compos. Struct. 112, 292–307 (2014)

    Article  Google Scholar 

  41. C.Y. Lee, J.H. Kim, Thermal post-buckling and snap-through instabilities of FGM panels in hypersonic flows. Aerosp. Sci. Technol. 30(1), 175–182 (2013)

    Article  Google Scholar 

  42. S.R. Li, H.D. Su, C.J. Cheng, Free vibration of functionally graded material beams with surface-bonded piezoelectric layers in thermal environment. Appl. Math. Mech. 30, 969–982 (2009)

    Article  MATH  Google Scholar 

  43. X.F. Li, Y.A. Kang, J.X. Wu, Exact frequency equations of free vibration of exponentially functionally graded beams. Appl. Acoust. 74(3), 413–420 (2013)

    Article  Google Scholar 

  44. Y. Liu, D.W. Shu, Free vibration analysis of exponential functionally graded beams with a single delamination. Compos. Part B Eng. 59, 166–172 (2014)

    Article  Google Scholar 

  45. A. Mahi, E.A. Bedia, A. Tounsi, I. Mechab, An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary conditions. Compos. Struct. 92(8), 1877–1887 (2010)

    Article  Google Scholar 

  46. A. Mahi, A. Tounsi, A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl. Math. Model. 39(9), 2489–2508 (2015)

    Article  MathSciNet  Google Scholar 

  47. M.A.A. Meziane, H.H. Abdelaziz, A. Tounsi, An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. J. Sandw. Struct. Mater. 16(3), 293–318 (2014)

    Article  Google Scholar 

  48. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Article  Google Scholar 

  49. O. Rahmani, A.A. Jandaghian, Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory. Appl. Phys. A 119(3), 1019–1032 (2015)

    Article  ADS  Google Scholar 

  50. O. Rahmani, O. Pedram, Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int. J. Eng. Sci. 77, 55–70 (2014)

    Article  MathSciNet  Google Scholar 

  51. J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2), 288–307 (2007)

    Article  MATH  Google Scholar 

  52. J.N. Reddy, S. El-Borgi, Eringen’s nonlocal theories of beams accounting for moderate rotations. Int. J. Eng. Sci. 82, 159–177 (2014)

    Article  MathSciNet  Google Scholar 

  53. J.N. Reddy, S. El-Borgi, J. Romanoff, Non-linear analysis of functionally graded microbeams using Eringen's non-local differential model. Int. J. Non-Linear Mech. 67, 308–318 (2014)

    Article  ADS  Google Scholar 

  54. H. Salehipour, A.R. Shahidi, H. Nahvi, Modified nonlocal elasticity theory for functionally graded materials. Int. J. Eng. Sci. 90, 44–57 (2015)

    Article  MathSciNet  Google Scholar 

  55. M. Şimşek, H.H. Yurtcu, Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos. Struct. 97, 378–386 (2013)

    Article  Google Scholar 

  56. R. Sourki, S.A.H. Hoseini, Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory. Appl. Phys. A 122(4), 1–11 (2016)

    Article  Google Scholar 

  57. T.R. Tauchert, Energy Principles in Structural Mechanics (McGraw-Hill Companies, New York, 1974)

    Google Scholar 

  58. Y. Tomota, K. Kuroki, T. Mori, I. Tamura, Tensile deformation of two-ductile phase alloys: flow curves of α–γ Fe–Cr–Ni alloys. Mater. Sci. Eng. 24(1), 85–94 (1976)

    Article  Google Scholar 

  59. A. Tounsi, S. Benguediab, B. Adda, A. Semmah, M. Zidour, Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes. Adv. Nano Res. 1(1), 1–11 (2013)

    Article  Google Scholar 

  60. B. Uymaz, Forced vibration analysis of functionally graded beams using nonlocal elasticity. Compos. Struct. 105, 227–239 (2013)

    Article  Google Scholar 

  61. S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct. Eng. Mech. 53(6), 1143–1165 (2015)

    Article  Google Scholar 

  62. M. Zidi, A. Tounsi, M.S.A. Houari, O.A. Bég, Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory. Aerosp. Sci. Technol. 34, 24–34 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (135-790-D1435). The authors, therefore, acknowledge DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamed, M.A., Eltaher, M.A., Sadoun, A.M. et al. Free vibration of symmetric and sigmoid functionally graded nanobeams. Appl. Phys. A 122, 829 (2016). https://doi.org/10.1007/s00339-016-0324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0324-0

Keywords

Navigation