Skip to main content
Log in

Black Germanium fabricated by reactive ion etching

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A reactive ion etching technique for the preparation of statistical “Black Germanium” antireflection surfaces, relying on self-organization in a Cl2 etch chemistry, is presented. The morphology of the fabricated Black Germanium surfaces is the result of a random lateral distribution of pyramidal etch pits with heights around (1450 ± 150) nm and sidewall angles between 80° and 85°. The pyramids’ base edges are oriented along the <110> crystal directions of Germanium, indicating a crystal anisotropy of the etching process. In the Vis–NIR, the tapered Black Germanium surface structure suppresses interface reflection to <2.5 % for normal incidence and still to <6 % at an angle of incidence of 70°. The presented Black Germanium might find applications as low-cost AR structure in optoelectronics and IR optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W.H. Southwell, J. Opt. Soc. Am. A 8, 549 (1991)

    Article  ADS  Google Scholar 

  2. C. Pacholski, C. Morhard, J. Spatz, D. Lehr, M. Schulze, E.-B. Kley, A. Tünnermann, M. Helgert, M. Sundermann, R. Brunner, Appl. Opt. 51, 8 (2012)

    Article  ADS  Google Scholar 

  3. D.S. Hobbs, B.D. Macleod, Proc. SPIE 5786(5786), 578640 (2005)

    Google Scholar 

  4. Q. Chen, G. Hubbard, P. Shields, C. Liu, D.W.E. Allsopp, W.N. Wang, S. Abbott, Appl. Phys. Lett. 94, 263118 (2009)

    Article  ADS  Google Scholar 

  5. C. Brückner, T. Käsebier, B. Pradarutti, S. Riehemann, G. Notni, E.-B. Kley, A. Tünnermann, Opt. Express 17, 3063 (2009)

    Article  ADS  Google Scholar 

  6. T. Lohmüller, M. Helgert, M. Sundermann, R. Brunner, J.P. Spatz, Nano Lett. 8, 1429 (2008)

    Article  ADS  Google Scholar 

  7. Y. Wang, N. Lu, H. Xu, G. Shi, M. Xu, X. Lin, H. Li, W. Wang, D. Qi, Y. Lu, L. Chi, Nano Res. 3, 520 (2010)

    Article  Google Scholar 

  8. A. Frommhold, A.P.G. Robinson, E. Tarte, Microelectron. Eng. 99, 43 (2012)

    Article  Google Scholar 

  9. M. Schulze, M. Damm, M. Helgert, E.-B. Kley, S. Nolte, A. Tünnermann, Opt. Express 20, 1422 (2012)

    Google Scholar 

  10. U. Schulz, P. Munzert, R. Leitel, I. Wendling, N. Kaiser, A. Tünnermann, Opt. Express 15, 13108 (2007)

    Article  ADS  Google Scholar 

  11. S.H. Zaidi, D.S. Ruby, J.M. Gee, I.E.E.E. Trans, Electron Devices 48, 1200 (2001)

    Article  ADS  Google Scholar 

  12. G.C. Schwartz, J. Vac. Sci. Technol. 16, 410 (1979)

    Article  ADS  Google Scholar 

  13. M. Steglich, T. Käsebier, F. Schrempel, E.-B. Kley, A. Tünnermann, Infrared Phys. Technol. 69, 218 (2015)

    Article  ADS  Google Scholar 

  14. R. Dussart, X. Mellhaoui, T. Tillocher, P. Lefaucheux, M. Volatier, C. Socquet-Clerc, P. Brault, P. Ranson, J. Phys. D 38, 3395 (2005)

    Article  ADS  Google Scholar 

  15. T. Tillocher, R. Dussart, X. Mellhaoui, P. Lefaucheux, N.M. Maaza, P. Ranson, M. Boufnichel, L.J. Overzet, J. Vac. Sci. Technol. A 24, 1073 (2006)

    Article  Google Scholar 

  16. H. Jansen, M. de Boer, R. Legtenberg, M. Elwenspoek, J. Micromech. Microeng. 5, 115 (1995)

    Article  ADS  Google Scholar 

  17. M. Steglich, T. Käsebier, M. Zilk, T. Pertsch, E.-B. Kley, A. Tünnermann, J. Appl. Phys. 116, 173503 (2014)

    Article  ADS  Google Scholar 

  18. H. Jansen, H. Gardeniers, M. de Boer, M. Elwenspoek, J. Fluitman, J. Micromech. Microeng. 6, 14 (1996)

    Article  ADS  Google Scholar 

  19. S. Schicho, A. Jaouad, C. Sellmer, D. Morris, V. Aimez, R. Arès, Mater. Lett. 94, 86 (2013)

    Article  Google Scholar 

  20. M. Köhler, Etching in microsystem technology, 1st edn. (Wiley-VCH, Weinheim, 1999)

    Book  Google Scholar 

  21. M. Lindblom, J. Reinspach, O. von Hofsten, M. Bertilson, H.M. Hertz, A. Holmberg, J. Vac. Sci. Technol. B 27, L1 (2009)

    Article  Google Scholar 

  22. H. Okano, Y. Horiike, M. Sekine, Jpn. J. Appl. Phys. 24, 68 (1985)

    Article  ADS  Google Scholar 

  23. M. Seel, P.S. Bagus, Phys. Rev. B 23, 5464 (1981)

    Article  ADS  Google Scholar 

  24. M. Kroll, T. Käsebier, M. Otto, R. Salzer, R. Wehrspohn, B. Kley, A. Tünnermann, T. Pertsch, Proc. SPIE 7725(7725), 772505 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the fo+ (Contract No. 03WKCK1D) funding program of the German Federal Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Steglich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steglich, M., Käsebier, T., Kley, EB. et al. Black Germanium fabricated by reactive ion etching. Appl. Phys. A 122, 836 (2016). https://doi.org/10.1007/s00339-016-0318-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0318-y

Keywords

Navigation