Skip to main content
Log in

Bridged single-walled carbon nanotube-based atomic-scale mass sensors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The potentials of carbon nanotubes (CNTs) as mechanical resonators for atomic-scale mass sensing are presented. To this aim, a nonlocal continuum-based model is proposed to study the dynamic behavior of bridged single-walled carbon nanotube-based mass nanosensors. The carbon nanotube (CNT) is considered as an elastic Euler–Bernoulli beam with von Kármán type geometric nonlinearity. Eringen’s nonlocal elastic field theory is utilized to model the interatomic long-range interactions within the structure of the CNT. This developed model accounts for the arbitrary position of the deposited atomic-mass. The natural frequencies and associated mode shapes are determined based on an eigenvalue problem analysis. An atom of xenon (Xe) is first considered as a specific case where the results show that the natural frequencies and mode shapes of the CNT are strongly dependent on the location of the deposited Xe and the nonlocal parameter of the CNT. It is also indicated that the first vibrational mode is the most sensitive when the mass is deposited at the middle of a single-walled carbon nanotube. However, when deposited in other locations, it is demonstrated that the second or third vibrational modes may be more sensitive. To investigate the sensitivity of bridged single-walled CNTs as mass sensors, different noble gases are considered, namely Xe, argon (Ar), and helium (He). It is shown that the sensitivity of the single-walled CNT to the Ar and He gases is much lower than the Xe gas due to the significant decrease in their masses. The derived model and performed analysis are so needed for mass sensing applications and particularly when the detected mass is randomly deposited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Tao, J.M. Boss, B.A. Moores, C.L. Degen, Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. (2014). doi:10.1038/ncomms4638

    Google Scholar 

  2. A.K. Huttel, G.A. Steele, B. Witkamp, M. Poot, L.P. Kouwenhoven, H.S. van der Zant, Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 9, 2547–2552 (2009)

    Article  ADS  Google Scholar 

  3. J. Moser, A. Eichler, J. Güttinger, M.I. Dykman, A. Bachtold, Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotechnol. 9, 1007–1011 (2014)

    Article  ADS  Google Scholar 

  4. M. Shaat, Effects of grain size and microstructure rigid rotations on the bending behavior of nanocrystalline material beams. Int. J. Mech. Sci. 94–95, 27–35 (2015)

    Article  Google Scholar 

  5. M. Shaat, A. Abdelkefi, Modeling of mechanical resonators used for nanocrystalline materials characterization and disease diagnosis of HIVs. Microsyst. Technol. 22(2), 305–318 (2016)

    Article  Google Scholar 

  6. M. Shaat, A. Abdelkefi, Pull-in instability of multi-phase nanocrystalline silicon beams under distributed electrostatic force. Int. J. Eng. Sci. 90, 58–75 (2015)

    Article  MathSciNet  Google Scholar 

  7. M. Shaat, A. Abdelkefi, Modeling the material structure and couple stress effects of nanocrystalline silicon beams for pull-in and bio-mass sensing applications. Int. J. Mech. Sci. 101–102, 280–291 (2015)

    Article  Google Scholar 

  8. L. Sekaric et al., Nanomechanical resonant structures in nanocrystalline diamond. Appl. Phys. Lett. 81, 4455–4457 (2002)

    Article  ADS  Google Scholar 

  9. A.U. Hutchinson et al., Dissipation in nanocrystalline-diamond nanomechanical resonators. Appl. Phys. Lett. 84, 972–974 (2004)

    Article  ADS  Google Scholar 

  10. B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett. 4(9), 1775–1779 (2008)

    Google Scholar 

  11. A. Dalgarno, W.D. Davison, Long-range interactions of alkali metals. Mol. Phys. 13(5), 479–486 (1967)

    Article  ADS  Google Scholar 

  12. R.J. Leroy, R.B. Bernstein, Dissociation energy and long-range potential of diatomic molecules from vibrational spacings of higher levels. J. Chem. Phys. 52(8), 3869–3879 (1970)

    Article  ADS  Google Scholar 

  13. V.M. Mostepanenko, I.Y. Sokolov, Hypothetical long-range interactions and restrictions on their parameters from force measurements. Phys. Rev. D 47(7), 2882–2891 (1993)

    Article  ADS  Google Scholar 

  14. P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513–1516 (1999)

    Article  ADS  Google Scholar 

  15. C. Li, T. Chou, Mass detection using carbon nanotube-based nanomechanical resonators. Appl. Phys. Lett. 84, 5246 (2004)

    Article  ADS  Google Scholar 

  16. C. Li, T. Chou, Strain and pressure sensing using single-walled carbon nanotubes. Nanotechnology 15, 1493–1496 (2004)

    Article  ADS  Google Scholar 

  17. H. Chiu, P. Hung, H.W.C. Postma, M. Bockrath, Atomic-scale mass sensing using carbon nanotubes resonators. Nano Lett. 8(12), 4342–4346 (2008)

    Article  ADS  Google Scholar 

  18. S. Sawano, T. Arie, S. Akita, Carbon nanotube resonator in liquid. Nano Lett. 10, 3395–3398 (2010)

    Article  ADS  Google Scholar 

  19. Y. Wang, T.W. Yeow, A review of carbon nanotubes-based gas sensors. J. Sens. Article ID 493904, p. 24 (2009)

  20. K. Balasubramanian, M. Burghard, Biosensors based on carbon nanotubes. Anal. Bioanal. Chem. 385, 452–468 (2006)

    Article  Google Scholar 

  21. C. Li, T.-W. Chou, Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68, 073405-3 (2003)

    ADS  Google Scholar 

  22. X.L. Feng, R. He, P. Yang, M.L. Roukes, Very high frequency silicon nanowire electromechanical resonators. Nano Lett. 7(7), 1953–1959 (2007)

    Article  ADS  Google Scholar 

  23. T. Murmu, M.A. McCarthy, S. Adhikari, Nonlocal elasticity based magnetic field affected vibration response of double single-walled carbon nanotube systems. J. Appl. Phys. 111, 113511 (2012)

    Article  ADS  Google Scholar 

  24. J. Li, K. Zhu, Weighing a single atom using a coupled plasmon-carbon nanotube system. Sci. Technol. Adv. Mater. 13, 025006 (2012). (6pp)

    Article  ADS  Google Scholar 

  25. R. Chowdhury, S. Adhikari, J. Mitchell, Vibrating carbon nanotube based bio-sensors. Phys. E 42, 104–109 (2009)

    Article  Google Scholar 

  26. S. Adhikari, R. Chowdhury, The calibration of carbon nanotube based bionanosensors. J. Appl. Phys. 107, 124322 (2010)

    Article  ADS  Google Scholar 

  27. I. Mehdipour, A. Barari, G. Domairry, Application of a cantilevered SWCNT with mass at the tip as a nanomechanical sensor. Comput. Mater. Sci. 50, 1830–1833 (2011)

    Article  Google Scholar 

  28. I. Mehdipour, A. Barari, Why the center-point of bridged carbon nanotube length is the most mass sensitive location for mass attachment? Comput. Mater. Sci. 55, 136–141 (2012)

    Article  Google Scholar 

  29. Y. Joshi, A. Hrasha, C. Shatma, Vibration signature analysis of single walled carbon nanotube based nanomechanical sensors. Phys. E 42, 2115–2123 (2010)

    Article  Google Scholar 

  30. T. Natsuki, N. Matsuyama, J. Shi, Q. Ni, Vibration analysis of nanomechanical mass sensor using carbon nanotubes under axial tensile loads. Appl. Phys. A 116, 1001–1007 (2014)

    Article  ADS  Google Scholar 

  31. H. Lee, J. Hsu, W. Chang, Frequency shift of carbon-nanotube-based mass sensor using nonlocal elasticity theory. Nanoscale Res. Lett. 5, 1774–1778 (2010)

    Article  ADS  Google Scholar 

  32. T. Murmu, S. Adhikari, Nonlocal frequency analysis of nanoscale biosensors. Sens. Actuators A 137, 41–48 (2012)

    Article  Google Scholar 

  33. M. Aydogdu, S. Filiz, Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Phys. E 43, 1229–1234 (2011)

    Article  Google Scholar 

  34. Z. Shen, G. Tang, L. Zhang, X. Li, Vibration of double-walled carbon nanotube based nanomechanical sensor with initial axial stress. Comput. Mater. Sci. 58, 51–58 (2012)

    Article  Google Scholar 

  35. Z. Shen, X. Li, L. Sheng, G. Tang, Nonlocal Timoshenko beam theory for vibration of carbon nanotube-based biosensor. Phys. E 44, 1169–1175 (2012)

    Article  Google Scholar 

  36. K. Kiani, H. Ghaffari, B. Mehri, Application of elastically supported single-walled carbon nanotubes for sensing arbitrarily attached nano-objects. Curr. Appl. Phys. 13, 107–120 (2013)

    Article  ADS  Google Scholar 

  37. X. Li, G. Tang, Z. Shen, K. Lee, Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory. Ultrasonics 55, 75–84 (2015)

    Article  Google Scholar 

  38. A.C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002)

    MATH  Google Scholar 

  39. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703 (1983)

    Article  ADS  Google Scholar 

  40. C. Polizzotto, Nonlocal elasticity and related variational principles. Int. J. Solids Struct. 38(42), 7359–7380 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. X. Zeng, Y. Chen, J.D. Lee, Determining material constants in nonlocal micromorphic theory through phonon dispersion relations. Int. J. Eng. Sci. 44, 1334–1345 (2006)

    Article  Google Scholar 

  42. J. Peddieson, G.R. Buchanan, R.P. McNitt, Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Article  Google Scholar 

  43. L.J. Sudak, Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281–7287 (2003)

    Article  ADS  Google Scholar 

  44. L.F. Wang, H.Y. Hu, Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71, 195412 (2005)

    Article  ADS  Google Scholar 

  45. Y.Q. Zhang, G.R. Liu, X.Y. Xie, Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 71, 195404 (2005)

    Article  ADS  Google Scholar 

  46. P. Lu, H.P. Lee, C. Lu, P.Q. Zhang, Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99, 073510 (2006)

    Article  ADS  Google Scholar 

  47. M. Xu, Free transverse vibrations of nano-to-micron scale beams. Proc. Roy. Soc. A 462, 2977–2995 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. J.N. Reddy, Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  49. M. Shaat, Iterative nonlocal elasticity for Kirchhoff plates. Int. J. Mech. Sci. 90, 162–170 (2015)

    Article  MathSciNet  Google Scholar 

  50. P. Lu, P.Q. Zhang, H.P. Lee, C.M. Wang, J.N. Reddy, Non-local elastic plate theories. Proc. R. Soc. A 463, 3225–3240 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Y. Aboelkassem, A.H. Nayfeh, M. Ghommem, Bio-mass sensor using an electrostatically actuated microcantilever in a vacuum microchannel. Microsyst. Technol. 16, 1749–1755 (2010)

    Article  Google Scholar 

  52. S.A. Emam, A Theoretical and Experimental Study of Nonlinear Dynamics of Buckled Beams. PhD dissertation, (Virginia Polytechnic Institute and State University, Blacksburg, VA, 2002)

  53. H.L. Dai, L. Wang, A. Abdelkefi, Q. Ni, On nonlinear behavior and buckling of fluid-transporting nanotubes. Int. J. Eng. Sci. 87, 13–22 (2015)

    Article  Google Scholar 

  54. T. Murmu, S. Adhikari, Nonlocal vibration of carbon nanotubes with attached buckyballs at tip. Mech. Res. Commun. 38, 62–67 (2011)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdelkefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali-Akbari, H.R., Shaat, M. & Abdelkefi, A. Bridged single-walled carbon nanotube-based atomic-scale mass sensors. Appl. Phys. A 122, 762 (2016). https://doi.org/10.1007/s00339-016-0274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0274-6

Keywords

Navigation