Abstract
Cesium iodide doped with thallium (CsI:Tl) crystals was grown to develop the gamma-ray detectors by using low-cost raw materials. Effect of impurities on optical properties and radiation detection performance was investigated. By a modified homemade Bridgman–Stockbarger technique, CsI:Tl samples were grown in two levels of CsI and TlI reactant materials, i.e., having as a very high purity of 99.999 % and a high purity of 99.9 %. XRD measurements indicate CsI:Tl crystals having a good quality with a dominant (110) plane. Having a cubic structure, a lattice constant of CsI crystals of 0.4574 nm and a crystallite size of 43.539 nm were obtained. From the lower-purity raw materials, calcite was found in an orange crystal with a lattice constant of 0.4560 nm and a crystallite size of 43.089 nm. By PL measurements, the optical properties of the CsI:Tl crystals were analyzed. ~540-nm-wavelength PL peak was observed from the colorless high-purity crystal, and ~600-nm-wavelength PL peak was observed from the orange crystal. The brighter PL emission was obtained from the orange crystals suggesting impurities. CsI:Tl surface morphology by SEM exhibited a smooth surface with some parallel crystal facets. For electrical properties of high-quality CsI:Tl crystals, the electrical resistances were 230 ± 16 MΩ in cross-sectional direction and 714 ± 136 MΩ in vertical direction with respect to more homogeneous crystal quality in cross-sectional direction than that in vertical direction. TEM measurement was applied to evaluate the microstructure of colorless CsI:Tl crystal with different patterns of a cubic structure. Both CsI:Tl crystals show good efficiencies and good resolutions. Maintaining the same electronic conditions and amplifications, the colorless CsI:Tl scintillators represented a higher detection efficiency at 122 keV of Co-57 of 78.4 % and the energy resolution of 23.3 % compared to the detection efficiency of 75.9 % and the energy resolution of 34.6 % of the orange scintillators. In summary, the unintended impurity as calcite in low-cost CsI:Tl scintillators was found to enhance PL emission but shift the PL wavelength. However, efficiency of radiation detection is slightly lower. By coupling with a suitable PMT, the radiation detection efficiency of low-cost CsI:Tl scintillators can be improved. From these valuable results, growing new ternary materials as CsCaI2 or CsI:Ca or Ca-codoped CsI:Tl scintillators could be one of the promising approaches to achieve highly efficient and low-cost radiation detectors with the optimization of the crystal growth conditions in the future.
This is a preview of subscription content, access via your institution.





References
M. Nikl, Phys. Stat. Sol. (a) 178, 595 (2000)
M. Nikl, Meas. Sci. Technol. 17, R37–R54 (2006)
B.D. Milbrath, A.J. Peurrung, M. Bliss, W.J. Weber, J. Mater. Res. 23(10), 2561–2581 (2008)
J.G. Rocha, S. Lanceros-Mendez, Recent Pat. Electr. Eng. 4, 1–26 (2011)
C. Michail, I. Valais, I. Seferis, N. Kalyvas, G. Fountos, I. Kandarakis, Radiat. Meas. 74, 39–46 (2015)
B.K. Cha, J.-H. Shin, J.H. Bae, C. Lee, S. Chang, H.K. Kim, C.K. Kim, G. Cho, Nucl. Instrum. Methods Phys. Res. Sect. A 604(1–2), 224–228 (2009)
W. Zhao, G. Ristic, J.A. Rowlands, Med. Phys. 31(9), 2594–2605 (2004)
L. Andreani, M. Bontempi, P.L. Rossi, L.P. Rignanese, M. Zuffa, G. Baldazzi, Nucl. Instrum. Methods Phys. Res. Sect. A 762, 11–15 (2014)
H.M. Park, S.J. Jeon, H.K. Lee and K.S. Joo, in IEEE 3rd International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), (2013), p. 1–5
C. Kim, H. Kim, J. Kim, C. Lee, H. Yoo, D.U. Kang, M. Cho, M.S. Kim, D. Lee, Y. Kim, K.T. Lim, S. Yang, G. Cho, Nucl. Eng. Technol. 47, 479–487 (2015)
L. Andreani, M. Bontempi, P.L. Rossi, L.P. Rignanese, M. Zuffa, G. Baldazzi, Nucl. Instrum. Methods Phys. Res. A 762, 11–15 (2014)
S. Shinde, S.G. Singh, S. Sen, S.C. Gadkari, Nucl. Instrum. Methods Phys. Res. Sect. A 810, 14–18 (2016)
J.D. Valentine, W.W. Moses, S.E. Derenzo, D.K. Wehe, G.F. Knoll, Nucl. Instrum. Methods Phys. Res. Sect. A 325(1–2), 147–157 (1993)
M. Grodzicka, M. Moszyński, T. Szczęśniak, W. Czarnacki, M. Szawowski, Ł. Swiderski, Ł. Kaźmierczak, K. Grodzicki, Nucl. Instrum. Methods Phys. Res. Sect. A 707, 73–79 (2013)
P. Yang, C.D. Harmon, F.P. Doty, J.A. Ohlhausen, IEEE Trans. Nucl. Sci. 61(2), 1024–1031 (2014)
D.S. Covita, C.D.R. Azevedo, C.C. Caldas, J.F.C.A. Veloso, Phys. Lett. B 701(2), 151–154 (2011)
B.K. Singh, Triloki, P. Garg, A. Prakash, G. Di Santo, E. Nappi, M.A. Nitti, A. Valentini, R. Zanoni, Nucl. Instrum. Methods Phys. Res. Sect. A 610(1), 350–353 (2009)
A.V. Gektin, I.M. Krasovitskaya, N.V. Shiran, V.V. Shlyakhturov, E.L. Vinograd, IEEE Trans. Nucl. Sci. 1, 111–113 (1994)
I. Garapyn, I. Hud, B. Pavlyk, Radiat. Meas. 38(4–6), 475–479 (2004)
G. Ren, X. Chen, S. Lu, Z. Li, X. Xue, D. Shen, Nucl. Instrum. Methods Phys. Res. Sect. A 564(1), 364–369 (2006)
D. Totsuka, T. Yanagida, Y. Fujimoto, J. Pejchal, Y. Yokota, A. Yoshikawa, Opt. Mater. 34(7), 1087–1091 (2012)
S.F. Chang, Z. Lou, C.C. Chen, Mater. Lett. 112, 190–193 (2013)
C.Y. Chen, S.H. Chen, C.C. Chen, J.S. Lin, Mater. Lett. 148, 138–141 (2015)
N. Balamurugan, A. Arulchakkaravarthi, S. Selvakumar, M. Lenin, R. Kumar, S. Muralithar, K. Sivaji, P. Ramasamy, J. Cryst. Growth 286(2), 294–299 (2006)
S.R. Miller, E.E. Ovechkina, P. Bennett, C. Brecher, Appl. Radiat. Isot. 82, 133–138 (2013)
L.W. Campbell, F. Gao, J. Lumin. 137, 121–131 (2013)
Triloki, P. Garg, R. Rai, B.K. Singh, Nucl. Instrum. Methods Phys. Res. A 736, 128–134 (2014)
Triloki, R. Rai, N. Gupta, N.F.A. Jammal, B.K. Singh, Nucl. Instrum. Methods Phys. Res. Sect. A 787, 161–165 (2015)
V. Sharma, S. Tiwari, B.L. Ahuja, Radiat. Phys. Chem. 79(6), 678–686 (2010)
E.D. Bourret-Courchesne, G.A. Bizarri, R. Borade, G. Gundiah, E.C. Samulon, Z. Yan, S.E. Derenzo, J. Cryst. Growth 352(1), 78–83 (2012)
K. Kamada, T. Yanagida, T. Endo, K. Tsutumi, Y. Usuki, M. Nikl, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Cryst. Growth 352(1), 88–90 (2012)
A.V. Gektin, A.N. Belsky, A.N. Vasil’ev, IEEE Trans. Nucl. Sci. 61(1), 262–270 (2013)
M.S. Alekhin, D.A. Biner, K.W. Kraemer, P. Dorenbos, Opt. Mater. 37, 382 (2014)
E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N.J. Cherepy, S.A. Payne, B.W. Sturm, C. Pedrini, IEEE Trans. Nucl. Sci. 60, 1057 (2013)
E.D. Bourret-Courchesne, G. Bizarri, R. Borade, Z. Yan, S.M. Hanrahan, G. Gundiah, A. Chaudhry, A. Canning, S.E. Derenzo, Nucl. Instrum. Methods Phys. Res. A 612, 138–142 (2009)
G. Bizarri, E.D. Bourret-Courchesne, Z. Yan, S.E. Derenzo, IEEE Trans. Nucl. Sci. 58, 3403–3410 (2011)
U. Shirwadkar, R. Hawrami, J. Glodo, E.V.D. van Loef, K.S. Shah, IEEE Trans. Nucl. Sci. 60, 1011 (2013)
M.S. Alekhin, D.A. Biner, K.W. Kraemer, P. Dorenbos, J. Lumin. 145, 723 (2014)
K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, M. Nikl, Cryst. Growth Des. 11, 4484–4490 (2011)
A.V. Gektin, I.M. Krasovitskaya, N.V. Shiran, V.V. Shlyahturov, E.L. Vinograd, IEEE Trans. Nucl. Sci. 42(4), 285–287 (1995)
S. Nagata, T. Kawai, T. Hirai, Opt. Mater. 35, 1257–1260 (2013)
J.T.M. de Haas, P. Dorenbos, C.W.E. van Eijk, Nucl. Instrum. Methods Phys. Res. A 537, 97–100 (2005)
M. da Conceição, C. Pereira, M.M. Hamada, Nucl. Instrum. Methods Phys. Res. Sect. A 537(1–2), 189–192 (2005)
V. Babin, A. Krasnikov, M. Nikl, K. Nitsch, A. Stolovits, S. Zazubovich, J. Lumin. 101, 219–226 (2003)
J.T.M. de Haas, P. Dorenbos, IEEE Trans. Nucl. Sci. 55, 1086–1092 (2008)
T. Kawai, S. Nagata, T. Hirai, Jpn. J. Appl. Phys. 52, 082401 (2013)
S.J. Ha, H. Kang, H. Park, H.J. Kim, S. Kim, S.H. Doh, S.J. Kang, IEEE Trans. Nucl. Sci. 56, 998–1001 (2009)
S.J. Kang, H.J. Kim, S.J. Ha, S.H. Lee, S. Kim, Prog. Nucl. Sci. Technol. 1, 240–243 (2011)
A. Gektin, N. Shiran, A. Belsky, S. Vasyukov, Opt. Mater. 34(12), 2017–2020 (2012)
A. Gektin, N. Shiran, S. Vasyukov, A. Belsky, D. Sofronov, Opt. Mater. 35(12), 2613–2617 (2013)
Y. Wu, G. Ren, M. Nikl, X. Chen, D. Ding, H. Li, S. Pan, F. Yang, Cryst. Eng. Commun. 16, 3312–3317 (2014)
Y. Wu, G. Ren, F. Meng, X. Chen, D. Ding, H. Li, S. Pan, Phys. Status Solidi (a) 211(11), 2586–2591 (2014)
S. Gridin, A. Belsky, M. Moszynski, A. Syntfeld-Kazuch, N. Shiran, A. Gektin, Nucl. Instrum. Methods Phys. Res. Sect. A 761, 13–18 (2014)
Y. Wu, G. Ren, F. Meng, X. Chen, D. Ding, H. Li, S. Pan, C.L. Melcher, IEEE Trans. Nucl. Sci. 62(2), 571–576 (2015)
I. Chung, J.H. Song, J. Im, J. Androulakis, C.D. Malliakas, H. Li, A.J. Freeman, J.T. Kenney, M.G. Kanatzidis, J. Am. Chem. Soc. 134(20), 8579–8587 (2012)
L. Peedikakkandy, P. Bhargava, Mater. Sci. Semicond. Process. 33, 103–109 (2015)
M. Gascón, E.C. Samulon, G. Gundiah, Z. Yan, I.V. Khodyuk, S.E. Derenzo, G.A. Bizarri, E.D. Bourret-Courchesne, J. Lumin. 156, 63–68 (2014)
A.J. Lehner, D.H. Fabini, H.A. Evans, C.A. Hébert, S.R. Smock, J. Hu, H. Wang, J.W. Zwanziger, M.L. Chabinyc, R. Seshadri, Chem. Mater. 27(20), 7137–7148 (2015)
R. Hofstadter, E.W. Odell, C.T. Schmidt, Rev. Sci. Instrum. 35, 246 (1964)
M. Zhuravlev, B. Blalock, K. Yang, M. Koschan, C.L. Melcher, J. Cryst. Growth 352, 115–119 (2012)
A. Lindsey, W. McAlexander, L. Stand, Y. Wu, M. Zhuravleva, C.L. Melcher, J. Cryst. Growth 427, 42–47 (2015)
M. Suta, C. Wickleder, J. Mater. Chem. C 3, 5233–5245 (2015)
R. Hofstadter, E.W. O’Dell, C.T. Schmidt, IEEE Trans. Nucl. Sci. 11(3), 12–14 (1964)
S.S. Novosad, Tech. Phys. 43(8), 956–958 (1998)
A. Aguado, A. Ayuela, J.M. López, J.A. Alonso, J. Phys. Soc. Jpn. 68, 2829–2835 (1999)
D.J. Singh, Phys. Rev. B 82(155145), 1–11 (2010)
S. Derenzo, M. Boswell, M. Weber, K. Brennan, “Scintillation Properties”, http://scintillator.lbl.gov
M. Jitpukdee, D. Wongsawaeng, S. Punnachaiya, J. Nucl. Sci. Technol. 48(9), 1250–1255 (2011)
J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)
D. Poelman, P.F. Smet, J. Phys. D Appl. Phys. 36, 1850–1857 (2003)
Acknowledgments
This research has been financially supported by Ratchadapiseksompotch Fund, Chulalongkorn University and The Thailand Research Fund under contract No. TRG58802265.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Saengkaew, P., Sanorpim, S., Jitpukdee, M. et al. Impact of precursor purity on optical properties and radiation detection of CsI:Tl scintillators. Appl. Phys. A 122, 729 (2016). https://doi.org/10.1007/s00339-016-0254-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-016-0254-x
Keywords
- Orange Crystal
- CaI2
- Cesium Iodide
- Crystal Growth Direction
- Crystal Growth Condition