Skip to main content

Impact of precursor purity on optical properties and radiation detection of CsI:Tl scintillators

Abstract

Cesium iodide doped with thallium (CsI:Tl) crystals was grown to develop the gamma-ray detectors by using low-cost raw materials. Effect of impurities on optical properties and radiation detection performance was investigated. By a modified homemade Bridgman–Stockbarger technique, CsI:Tl samples were grown in two levels of CsI and TlI reactant materials, i.e., having as a very high purity of 99.999 % and a high purity of 99.9 %. XRD measurements indicate CsI:Tl crystals having a good quality with a dominant (110) plane. Having a cubic structure, a lattice constant of CsI crystals of 0.4574 nm and a crystallite size of 43.539 nm were obtained. From the lower-purity raw materials, calcite was found in an orange crystal with a lattice constant of 0.4560 nm and a crystallite size of 43.089 nm. By PL measurements, the optical properties of the CsI:Tl crystals were analyzed. ~540-nm-wavelength PL peak was observed from the colorless high-purity crystal, and ~600-nm-wavelength PL peak was observed from the orange crystal. The brighter PL emission was obtained from the orange crystals suggesting impurities. CsI:Tl surface morphology by SEM exhibited a smooth surface with some parallel crystal facets. For electrical properties of high-quality CsI:Tl crystals, the electrical resistances were 230 ± 16 MΩ in cross-sectional direction and 714 ± 136 MΩ in vertical direction with respect to more homogeneous crystal quality in cross-sectional direction than that in vertical direction. TEM measurement was applied to evaluate the microstructure of colorless CsI:Tl crystal with different patterns of a cubic structure. Both CsI:Tl crystals show good efficiencies and good resolutions. Maintaining the same electronic conditions and amplifications, the colorless CsI:Tl scintillators represented a higher detection efficiency at 122 keV of Co-57 of 78.4 % and the energy resolution of 23.3 % compared to the detection efficiency of 75.9 % and the energy resolution of 34.6 % of the orange scintillators. In summary, the unintended impurity as calcite in low-cost CsI:Tl scintillators was found to enhance PL emission but shift the PL wavelength. However, efficiency of radiation detection is slightly lower. By coupling with a suitable PMT, the radiation detection efficiency of low-cost CsI:Tl scintillators can be improved. From these valuable results, growing new ternary materials as CsCaI2 or CsI:Ca or Ca-codoped CsI:Tl scintillators could be one of the promising approaches to achieve highly efficient and low-cost radiation detectors with the optimization of the crystal growth conditions in the future.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. M. Nikl, Phys. Stat. Sol. (a) 178, 595 (2000)

    Article  ADS  Google Scholar 

  2. M. Nikl, Meas. Sci. Technol. 17, R37–R54 (2006)

    Article  ADS  Google Scholar 

  3. B.D. Milbrath, A.J. Peurrung, M. Bliss, W.J. Weber, J. Mater. Res. 23(10), 2561–2581 (2008)

    Article  ADS  Google Scholar 

  4. J.G. Rocha, S. Lanceros-Mendez, Recent Pat. Electr. Eng. 4, 1–26 (2011)

    Google Scholar 

  5. C. Michail, I. Valais, I. Seferis, N. Kalyvas, G. Fountos, I. Kandarakis, Radiat. Meas. 74, 39–46 (2015)

    Article  Google Scholar 

  6. B.K. Cha, J.-H. Shin, J.H. Bae, C. Lee, S. Chang, H.K. Kim, C.K. Kim, G. Cho, Nucl. Instrum. Methods Phys. Res. Sect. A 604(1–2), 224–228 (2009)

    Article  ADS  Google Scholar 

  7. W. Zhao, G. Ristic, J.A. Rowlands, Med. Phys. 31(9), 2594–2605 (2004)

    Article  Google Scholar 

  8. L. Andreani, M. Bontempi, P.L. Rossi, L.P. Rignanese, M. Zuffa, G. Baldazzi, Nucl. Instrum. Methods Phys. Res. Sect. A 762, 11–15 (2014)

    Article  ADS  Google Scholar 

  9. H.M. Park, S.J. Jeon, H.K. Lee and K.S. Joo, in IEEE 3rd International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), (2013), p. 1–5

  10. C. Kim, H. Kim, J. Kim, C. Lee, H. Yoo, D.U. Kang, M. Cho, M.S. Kim, D. Lee, Y. Kim, K.T. Lim, S. Yang, G. Cho, Nucl. Eng. Technol. 47, 479–487 (2015)

    Article  Google Scholar 

  11. L. Andreani, M. Bontempi, P.L. Rossi, L.P. Rignanese, M. Zuffa, G. Baldazzi, Nucl. Instrum. Methods Phys. Res. A 762, 11–15 (2014)

    Article  ADS  Google Scholar 

  12. S. Shinde, S.G. Singh, S. Sen, S.C. Gadkari, Nucl. Instrum. Methods Phys. Res. Sect. A 810, 14–18 (2016)

    Article  ADS  Google Scholar 

  13. J.D. Valentine, W.W. Moses, S.E. Derenzo, D.K. Wehe, G.F. Knoll, Nucl. Instrum. Methods Phys. Res. Sect. A 325(1–2), 147–157 (1993)

    Article  ADS  Google Scholar 

  14. M. Grodzicka, M. Moszyński, T. Szczęśniak, W. Czarnacki, M. Szawowski, Ł. Swiderski, Ł. Kaźmierczak, K. Grodzicki, Nucl. Instrum. Methods Phys. Res. Sect. A 707, 73–79 (2013)

    Article  ADS  Google Scholar 

  15. P. Yang, C.D. Harmon, F.P. Doty, J.A. Ohlhausen, IEEE Trans. Nucl. Sci. 61(2), 1024–1031 (2014)

    Article  ADS  Google Scholar 

  16. D.S. Covita, C.D.R. Azevedo, C.C. Caldas, J.F.C.A. Veloso, Phys. Lett. B 701(2), 151–154 (2011)

    Article  ADS  Google Scholar 

  17. B.K. Singh, Triloki, P. Garg, A. Prakash, G. Di Santo, E. Nappi, M.A. Nitti, A. Valentini, R. Zanoni, Nucl. Instrum. Methods Phys. Res. Sect. A 610(1), 350–353 (2009)

    Article  ADS  Google Scholar 

  18. A.V. Gektin, I.M. Krasovitskaya, N.V. Shiran, V.V. Shlyakhturov, E.L. Vinograd, IEEE Trans. Nucl. Sci. 1, 111–113 (1994)

    Google Scholar 

  19. I. Garapyn, I. Hud, B. Pavlyk, Radiat. Meas. 38(4–6), 475–479 (2004)

    Article  Google Scholar 

  20. G. Ren, X. Chen, S. Lu, Z. Li, X. Xue, D. Shen, Nucl. Instrum. Methods Phys. Res. Sect. A 564(1), 364–369 (2006)

    Article  ADS  Google Scholar 

  21. D. Totsuka, T. Yanagida, Y. Fujimoto, J. Pejchal, Y. Yokota, A. Yoshikawa, Opt. Mater. 34(7), 1087–1091 (2012)

    Article  ADS  Google Scholar 

  22. S.F. Chang, Z. Lou, C.C. Chen, Mater. Lett. 112, 190–193 (2013)

    Article  Google Scholar 

  23. C.Y. Chen, S.H. Chen, C.C. Chen, J.S. Lin, Mater. Lett. 148, 138–141 (2015)

    Article  Google Scholar 

  24. N. Balamurugan, A. Arulchakkaravarthi, S. Selvakumar, M. Lenin, R. Kumar, S. Muralithar, K. Sivaji, P. Ramasamy, J. Cryst. Growth 286(2), 294–299 (2006)

    Article  ADS  Google Scholar 

  25. S.R. Miller, E.E. Ovechkina, P. Bennett, C. Brecher, Appl. Radiat. Isot. 82, 133–138 (2013)

    Article  Google Scholar 

  26. L.W. Campbell, F. Gao, J. Lumin. 137, 121–131 (2013)

    Article  Google Scholar 

  27. Triloki, P. Garg, R. Rai, B.K. Singh, Nucl. Instrum. Methods Phys. Res. A 736, 128–134 (2014)

    Article  ADS  Google Scholar 

  28. Triloki, R. Rai, N. Gupta, N.F.A. Jammal, B.K. Singh, Nucl. Instrum. Methods Phys. Res. Sect. A 787, 161–165 (2015)

    Article  ADS  Google Scholar 

  29. V. Sharma, S. Tiwari, B.L. Ahuja, Radiat. Phys. Chem. 79(6), 678–686 (2010)

    Article  ADS  Google Scholar 

  30. E.D. Bourret-Courchesne, G.A. Bizarri, R. Borade, G. Gundiah, E.C. Samulon, Z. Yan, S.E. Derenzo, J. Cryst. Growth 352(1), 78–83 (2012)

    Article  ADS  Google Scholar 

  31. K. Kamada, T. Yanagida, T. Endo, K. Tsutumi, Y. Usuki, M. Nikl, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Cryst. Growth 352(1), 88–90 (2012)

    Article  ADS  Google Scholar 

  32. A.V. Gektin, A.N. Belsky, A.N. Vasil’ev, IEEE Trans. Nucl. Sci. 61(1), 262–270 (2013)

    Article  ADS  Google Scholar 

  33. M.S. Alekhin, D.A. Biner, K.W. Kraemer, P. Dorenbos, Opt. Mater. 37, 382 (2014)

    Article  ADS  Google Scholar 

  34. E. Rowe, P. Bhattacharya, E. Tupitsyn, M. Groza, A. Burger, N.J. Cherepy, S.A. Payne, B.W. Sturm, C. Pedrini, IEEE Trans. Nucl. Sci. 60, 1057 (2013)

    Article  ADS  Google Scholar 

  35. E.D. Bourret-Courchesne, G. Bizarri, R. Borade, Z. Yan, S.M. Hanrahan, G. Gundiah, A. Chaudhry, A. Canning, S.E. Derenzo, Nucl. Instrum. Methods Phys. Res. A 612, 138–142 (2009)

    Article  ADS  Google Scholar 

  36. G. Bizarri, E.D. Bourret-Courchesne, Z. Yan, S.E. Derenzo, IEEE Trans. Nucl. Sci. 58, 3403–3410 (2011)

    Article  ADS  Google Scholar 

  37. U. Shirwadkar, R. Hawrami, J. Glodo, E.V.D. van Loef, K.S. Shah, IEEE Trans. Nucl. Sci. 60, 1011 (2013)

    Article  ADS  Google Scholar 

  38. M.S. Alekhin, D.A. Biner, K.W. Kraemer, P. Dorenbos, J. Lumin. 145, 723 (2014)

    Article  Google Scholar 

  39. K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, M. Nikl, Cryst. Growth Des. 11, 4484–4490 (2011)

    Article  Google Scholar 

  40. A.V. Gektin, I.M. Krasovitskaya, N.V. Shiran, V.V. Shlyahturov, E.L. Vinograd, IEEE Trans. Nucl. Sci. 42(4), 285–287 (1995)

    Article  ADS  Google Scholar 

  41. S. Nagata, T. Kawai, T. Hirai, Opt. Mater. 35, 1257–1260 (2013)

    Article  ADS  Google Scholar 

  42. J.T.M. de Haas, P. Dorenbos, C.W.E. van Eijk, Nucl. Instrum. Methods Phys. Res. A 537, 97–100 (2005)

    Article  ADS  Google Scholar 

  43. M. da Conceição, C. Pereira, M.M. Hamada, Nucl. Instrum. Methods Phys. Res. Sect. A 537(1–2), 189–192 (2005)

    ADS  Google Scholar 

  44. V. Babin, A. Krasnikov, M. Nikl, K. Nitsch, A. Stolovits, S. Zazubovich, J. Lumin. 101, 219–226 (2003)

    Article  Google Scholar 

  45. J.T.M. de Haas, P. Dorenbos, IEEE Trans. Nucl. Sci. 55, 1086–1092 (2008)

    Article  ADS  Google Scholar 

  46. T. Kawai, S. Nagata, T. Hirai, Jpn. J. Appl. Phys. 52, 082401 (2013)

    Article  ADS  Google Scholar 

  47. S.J. Ha, H. Kang, H. Park, H.J. Kim, S. Kim, S.H. Doh, S.J. Kang, IEEE Trans. Nucl. Sci. 56, 998–1001 (2009)

    Article  ADS  Google Scholar 

  48. S.J. Kang, H.J. Kim, S.J. Ha, S.H. Lee, S. Kim, Prog. Nucl. Sci. Technol. 1, 240–243 (2011)

    Article  Google Scholar 

  49. A. Gektin, N. Shiran, A. Belsky, S. Vasyukov, Opt. Mater. 34(12), 2017–2020 (2012)

    Article  ADS  Google Scholar 

  50. A. Gektin, N. Shiran, S. Vasyukov, A. Belsky, D. Sofronov, Opt. Mater. 35(12), 2613–2617 (2013)

    Article  ADS  Google Scholar 

  51. Y. Wu, G. Ren, M. Nikl, X. Chen, D. Ding, H. Li, S. Pan, F. Yang, Cryst. Eng. Commun. 16, 3312–3317 (2014)

    Article  Google Scholar 

  52. Y. Wu, G. Ren, F. Meng, X. Chen, D. Ding, H. Li, S. Pan, Phys. Status Solidi (a) 211(11), 2586–2591 (2014)

    Article  Google Scholar 

  53. S. Gridin, A. Belsky, M. Moszynski, A. Syntfeld-Kazuch, N. Shiran, A. Gektin, Nucl. Instrum. Methods Phys. Res. Sect. A 761, 13–18 (2014)

    Article  ADS  Google Scholar 

  54. Y. Wu, G. Ren, F. Meng, X. Chen, D. Ding, H. Li, S. Pan, C.L. Melcher, IEEE Trans. Nucl. Sci. 62(2), 571–576 (2015)

    Article  ADS  Google Scholar 

  55. I. Chung, J.H. Song, J. Im, J. Androulakis, C.D. Malliakas, H. Li, A.J. Freeman, J.T. Kenney, M.G. Kanatzidis, J. Am. Chem. Soc. 134(20), 8579–8587 (2012)

    Article  Google Scholar 

  56. L. Peedikakkandy, P. Bhargava, Mater. Sci. Semicond. Process. 33, 103–109 (2015)

    Article  Google Scholar 

  57. M. Gascón, E.C. Samulon, G. Gundiah, Z. Yan, I.V. Khodyuk, S.E. Derenzo, G.A. Bizarri, E.D. Bourret-Courchesne, J. Lumin. 156, 63–68 (2014)

    Article  Google Scholar 

  58. A.J. Lehner, D.H. Fabini, H.A. Evans, C.A. Hébert, S.R. Smock, J. Hu, H. Wang, J.W. Zwanziger, M.L. Chabinyc, R. Seshadri, Chem. Mater. 27(20), 7137–7148 (2015)

    Article  Google Scholar 

  59. R. Hofstadter, E.W. Odell, C.T. Schmidt, Rev. Sci. Instrum. 35, 246 (1964)

    Article  ADS  Google Scholar 

  60. M. Zhuravlev, B. Blalock, K. Yang, M. Koschan, C.L. Melcher, J. Cryst. Growth 352, 115–119 (2012)

    Article  ADS  Google Scholar 

  61. A. Lindsey, W. McAlexander, L. Stand, Y. Wu, M. Zhuravleva, C.L. Melcher, J. Cryst. Growth 427, 42–47 (2015)

    Article  ADS  Google Scholar 

  62. M. Suta, C. Wickleder, J. Mater. Chem. C 3, 5233–5245 (2015)

    Article  Google Scholar 

  63. R. Hofstadter, E.W. O’Dell, C.T. Schmidt, IEEE Trans. Nucl. Sci. 11(3), 12–14 (1964)

    Article  ADS  Google Scholar 

  64. S.S. Novosad, Tech. Phys. 43(8), 956–958 (1998)

    Article  Google Scholar 

  65. A. Aguado, A. Ayuela, J.M. López, J.A. Alonso, J. Phys. Soc. Jpn. 68, 2829–2835 (1999)

    Article  ADS  Google Scholar 

  66. D.J. Singh, Phys. Rev. B 82(155145), 1–11 (2010)

    Google Scholar 

  67. S. Derenzo, M. Boswell, M. Weber, K. Brennan, “Scintillation Properties”, http://scintillator.lbl.gov

  68. M. Jitpukdee, D. Wongsawaeng, S. Punnachaiya, J. Nucl. Sci. Technol. 48(9), 1250–1255 (2011)

    Article  Google Scholar 

  69. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  Google Scholar 

  70. D. Poelman, P.F. Smet, J. Phys. D Appl. Phys. 36, 1850–1857 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research has been financially supported by Ratchadapiseksompotch Fund, Chulalongkorn University and The Thailand Research Fund under contract No. TRG58802265.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phannee Saengkaew.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saengkaew, P., Sanorpim, S., Jitpukdee, M. et al. Impact of precursor purity on optical properties and radiation detection of CsI:Tl scintillators. Appl. Phys. A 122, 729 (2016). https://doi.org/10.1007/s00339-016-0254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0254-x

Keywords

  • Orange Crystal
  • CaI2
  • Cesium Iodide
  • Crystal Growth Direction
  • Crystal Growth Condition