Skip to main content
Log in

Effect of cobalt implantation on structural and optical properties of rutile TiO2(110)

  • Rapid communications
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Photo-absorption properties of Co implantation in rutile TiO2(110) have been investigated. Nearly five times enhancement in absorbance of visible light and 1.7 times increase in UV light have been observed. Formation of crystalline CoTiO3 and Ti1−x Co x O2 phases at high and low fluences, respectively, demonstrates a crucial role in increasing the photo-absorbance, especially in the visible regime. Ti-rich nanostructures and Ti3+ vacancies that develop after ion implantation also reveal significant contribution in these observations. These Co implanted rutile TiO2 surfaces will be useful for visible light photo-catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. H. Li, Y. Zhang, S. Wang, Q. Wu, C. Liu, J. Hazard. Mater. 169, 1045 (2009)

    Article  Google Scholar 

  2. U. Diebold, Surf. Sci. Rep. 48, 53 (2003)

    Article  ADS  Google Scholar 

  3. G. Akpan, B.H. Hameed, Appl. Catal. A Gen. 375, 1 (2010)

    Article  Google Scholar 

  4. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269–271 (2001)

    Article  Google Scholar 

  5. S.U.M. Khan, M.A. Shahry, W.B. Ingler Jr., Science 297, 2243–2245 (2002)

    Article  ADS  Google Scholar 

  6. X.H. Tang, D.Y. Li, J. Phys. Chem. C 112, 5405–5409 (2008)

    Article  Google Scholar 

  7. Y.F. Li, D.H. Xu, J.I. Oh, W.Z. Shen, X. Li, Y. Yu, ACS Catal. 2, 391–398 (2012)

    Article  Google Scholar 

  8. J. Choi, H. Park, M.R. Hoffmann, J. Phys. Chem. C 114, 783–792 (2010)

    Article  Google Scholar 

  9. F. Dong, W. Zhao, Z. Wu, Nanotechnology 19, 365607 (2008)

    Article  Google Scholar 

  10. X. Pan, M.Q. Yang, X. Fu, N. Zhang, Y.J. Xu, Nanoscale 5, 3601 (2013)

    Article  ADS  Google Scholar 

  11. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C Photochem. Rev. 1, 1–21 (2001)

    Article  Google Scholar 

  12. O. Carp, C.L. Huisman, A. Reller, Prog. Solid State Chem. 32, 33–177 (2004)

    Article  Google Scholar 

  13. P. Periyat, K.V. Baiju, P. Mukundan, P.K. Pillai, K.G.K. Warrier, Appl. Catal. A Gen. 349, 13–19 (2008)

    Article  Google Scholar 

  14. J.G. Yu, G.P. Dai, Q.J. Xiang, M. Jaroniec, J. Mater. Chem. 21, 1049–1057 (2011)

    Article  Google Scholar 

  15. D.H. Kim, K.S. Lee, Y.S. Kim, Y.C. Chung, S.J. Kim, J. Am. Ceram. Soc. 89, 515 (2006)

    Article  Google Scholar 

  16. S. Kim, S.J. Hwang, W. Choi, J. Phys. Chem. B 109, 24260 (2005)

    Article  Google Scholar 

  17. M.S. Lee, S.S. Hong, M. Moheseni, J. Mol. Catal. A 242, 135 (2005)

    Article  Google Scholar 

  18. O. Yildirim, S. Cornelius, A. Smekhova, G. Zykov, E.A. Ganshina, A.B. Granovsky, R. Hbner, C. Bhtz, K. Potzger, J. Appl. Phys. 117, 183901 (2015)

    Article  ADS  Google Scholar 

  19. N. Akdogan, A. Nefedov, H. Zabel, K. Westerholt, H.W. Becker, C. Somsen, S. Gok, A. Bashir, R. Khaibullin, L. Tagirov, J. Phys. D Appl. Phys. 42, 115005 (2009)

    Article  ADS  Google Scholar 

  20. Y.N. Shieh, Y.Y. Chang, Thin Solid Films 518, 7464 (2010)

    Article  ADS  Google Scholar 

  21. L.Z. Qin, H. Liang, B. Liao, A.D. Liub, X.Y. Wub, J. Sun, NIMB 307, 385–390 (2013)

    Article  ADS  Google Scholar 

  22. R. Amadelli, L. Samiolo, A. Maldotti, A. Molinari, M. Valigi, D. Gazzoli, Int. J. Photoenergy 2008, 853753 (2008)

    Article  Google Scholar 

  23. R.I. Khaibullin, L.R. Tagirov, B.Z. Rameev, S.Z. Ibragimov, F. Yildiz, B. Aktas, J. Phys. Condens. Matter 16, L443–L449 (2004)

    Article  ADS  Google Scholar 

  24. C. Silva, A.R.G. Costa, R.C.D. Silva, L.C. Alves, L.P. Ferreira, M.D. Carvalho, N. Franco, M. Godinho, M.M. Cruz, J. Mag. Mater. 364, 106–116 (2014)

    Article  ADS  Google Scholar 

  25. A.L. Stepanov, Rev. Adv. Mater. Sci. 30, 150–165 (2012)

    Google Scholar 

  26. V. Solanki, S. Majumder, I. Mishra, P. Dash, C. Singh, D. Kanjilal, S. Varma, J. Appl. Phys. 115, 124306 (2014)

    Article  ADS  Google Scholar 

  27. D. Paramanik, S.R. Sahoo, S. Majumder, P.S. Raman, S. Varma, Vacuum 84, 602 (2010)

    Article  ADS  Google Scholar 

  28. D. Paramanik, S.N. Sahu, S. Varma, J. Phys. D Appl. Phys. 41, 125308 (2008)

    Article  ADS  Google Scholar 

  29. S.R. Joshi, T. Bagarti, S. Varma, Surf. Sci. 641, 170 (2015)

    Article  ADS  Google Scholar 

  30. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods B 268, 1818 (2010)

    Article  ADS  Google Scholar 

  31. S. Fischer, A.W. Munz, K.D. Schierbaum, W. Gopel, J. Vac. Sci. Technol. B 14, 961 (1996)

    Article  Google Scholar 

  32. R.M. Bradley, J.M.E. Harper, J. Vac. Sci. Technol. A 6, 2390 (1988)

    Article  ADS  Google Scholar 

  33. T. Kumar, A. Kumar, D.C. Agarwal, N.P. Lalla, D. Kanjilal, Nanoscale Res. Lett. 8, 336 (2013)

    Article  ADS  Google Scholar 

  34. T. Kumar, A. Kumar, N.P. Lalla, S. Hooda, S. Ojha, S. Verma, D. Kanjilal, Appl. Surf. Sci. 283, 417 (2013)

    Article  ADS  Google Scholar 

  35. S. Varma, C.M. Reaves, V.B. Hill, S.P. DenBaars, W.H. Weinberg, Surf. Sci. 393, 24 (1997)

    Article  ADS  Google Scholar 

  36. M. Kolmer, A.A. Zebari, M. Goryl, F. Buatier de Mongeot, F. Zasada, W. Piskorz, P. Pietrzyk, Z. Sojka, F. Kork, M. Szymonski, Phys. Rev. B 88, 195427 (2013)

    Article  ADS  Google Scholar 

  37. M.A. Khan, A. Kotani, J.C. Parlebas, J. Phys. Condens. Matter. 3, 1763–1772 (1991)

    Article  ADS  Google Scholar 

  38. H.Y. Jeong, J.Y. Lee, S.Y. Choi, J.W. Kim, Appl. Phys. Lett. 95, 162108 (2009)

    Article  ADS  Google Scholar 

  39. S. Majumder, I. Mishra, U. Subudhi, S. Varma, Appl. Phys. Lett. 103, 063103 (2013)

    Article  ADS  Google Scholar 

  40. S. Majumder, D. Paramanik, V. Solanki, B.P. Bag, Shikha Varma, Appl. Phys. Lett. 98, 053105 (2011)

    Article  ADS  Google Scholar 

  41. Zhao, Z., Zhang, X., Zhang, G., Liu, Z., Qu, D., Miao, X., Feng, P., Sun, Z.: Nano Res. doi:10.1007/s12274-015-0917-5

  42. O. Yldirim, S. Cornelius, M. Butterling, W. Anwand, A. Wagner, A. Smekhova, J. Fiedler, R. Bttger, C. Bhtz, K. Potzger, Appl. Phys. Lett. 107, 242405 (2015)

    Article  ADS  Google Scholar 

  43. Y. Liu, J.H. Wei, R. Xiong, C.X. Pan, J. Shi, Appl. Surf. Sci. 257, 8121 (2011)

    Article  ADS  Google Scholar 

  44. S. Zhou, G. Talut, K. Potzger, A. Shalimov, J. Grenzer, W. Skorupa, M. Helm, J. Fassbender, E. izmar, S.A. Zvyagin, J. Wosnitza, J. Appl. Phys. 103, 083907 (2008)

    Article  ADS  Google Scholar 

  45. Y. Matsumoto, M. Murakami, T. Shono, T. Hasagawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, H. Koinuma, Science 291, 854 (2001)

    Article  ADS  Google Scholar 

  46. D. Ma, Z. Lu, Y. Tang, T. Li, Z. Tang, Z. Yang, Phys. Lett. A 378, 2570–2575 (2014)

    Article  ADS  Google Scholar 

  47. S.P.S. Porto, P.A. Fleury, T.C. Damen, Phys. Rev. 154, 522 (1967)

    Article  ADS  Google Scholar 

  48. C. Huang, X. Liu, L. Kong, W. Lan, Q. Su, Y. Wang, Appl. Phys. A 87, 781 (2007)

    Article  ADS  Google Scholar 

  49. B. Santara, B. Pal, P.K. Giri, J. Appl. Phys. 110, 114322 (2011)

    Article  ADS  Google Scholar 

  50. A.K. Rumaiz, J.C. Woicik, E. Cockayne, H.Y. Lin, G.H. Jaffari, S.I. Shah, Appl. Phys. Lett. 95, 262111 (2009)

    Article  ADS  Google Scholar 

  51. K. Ando, H. Saito, Z. Jin, T. Fukumura, M. Kawasaki, Y. Matsumoto, H. koinuma, J. Appl. Phys. 89, 7284 (2001)

    Article  ADS  Google Scholar 

  52. F. Gracia, J.P. Holgado, A. Caballero, A.R. Gonzalez-Elipe, J. Phys. Chem. B 108, 17466 (2004)

    Article  Google Scholar 

  53. M. Ivill, S.J. Pearton, S. Rawal, L. Leu, P. Sadik, R. Das, A.F. Hebard, M. Chisholm, J.D. Budai, D.P. Norton, New J. Phys. 10, 065002 (2008)

    Article  ADS  Google Scholar 

  54. L. Chiodo, J.M.G. Lastra, D.J. Mowbray, A. Iacomino, A. Rubio, Computational Studies of New Materials from Nanostructures to Bulk Energy Conversion Materials (World Scientific, Singapore, 2010)

    Google Scholar 

  55. N. Satoh, T. Nakashima, K. Kamikura, K. Yamamoto, Nat. Nanotechnol. 3, 106 (2008)

    Article  ADS  Google Scholar 

  56. H. Peng, J. Li, J. Phys. Chem. C 112, 20241 (2008)

    Article  Google Scholar 

  57. Y. Brik, M. Kacimi, M. Ziyad, B.V. Francois, J. Catal. 202, 118 (2001)

    Article  Google Scholar 

  58. E.I. Solomon, A.B.P. Lever, Inorganic Electronic Structure and Spectroscopy Vol 1 methodology (Wiley, New York, 1999)

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the help of Santosh Kumar Choudhury (IOP, Bhubaneswar), Ramesh Chandra (IIT, Roorkee), Priyadarshini Dash and Devrani Devi (IUAC, N. Delhi) with XPS, XRD, UV–Vis and implantation, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shikha Varma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, S.R., Padmanabhan, B., Chanda, A. et al. Effect of cobalt implantation on structural and optical properties of rutile TiO2(110). Appl. Phys. A 122, 713 (2016). https://doi.org/10.1007/s00339-016-0243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0243-0

Keywords

Navigation