Skip to main content

Advertisement

Log in

Improved performance of Ag-doped TiO2 synthesized by modified sol–gel method as photoanode of dye-sensitized solar cell

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ag-doped TiO2 with Ag content ranging from 1 to 7 mol% was synthesized by a modified sol–gel route, and its performance as the photoanode of dye-sensitized solar cells (DSSCs) was compared with undoped TiO2 photoanode. Titanium(IV)isopropoxide was used as precursor and hexamethylenetetramine as the capping agent. XRD results show the formation of TiO2 nanoparticles with an average crystallite size of 5 nm (1 % Ag-doped TiO2) and 9 nm (undoped TiO2), respectively. The TiO2 nanopowder was used to prepare its thin film photoelectrode using doctor’s blade method. Significant improvement in light-to-energy conversion efficiency was achieved when thin films of 1 % Ag-doped TiO2 were applied as photoanode in DSSC taking N719 as the sensitizer dye. As evidenced by EIS measurements, the electron lifetime of DSSC with Ag-doped TiO2 increased from 1.33 (for undoped TiO2) to 2.05 ms. The short-circuit current density (J sc), open-circuit voltage (V oc), fill factor (FF) and the overall energy conversion efficiency (η) were 1.07 mA cm−2, 0.72 V, 0.73 and 0.40 %, respectively, with the use of 1 % Ag-doped TiO2 photoanode, whereas with undoped TiO2 under similar conditions, J sc = 0.63 mA cm−2, V oc = 0.70 V, fill factor 0.45 and conversion efficiency 0.14 % could be obtained. Therefore, compared with the reference DSSC containing an undoped TiO2 photoanode, the power conversion efficiency of the cell based on Ag-doped TiO2 has been remarkably enhanced by ~70 %. The substantial improvement in the device performance is attributed to the reduced band-gap energy, retarded charge recombination and greater surface coverage of the sensitizing dye over Ag-doped TiO2, which ultimately resulted in improved IPCE, J SC and η values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Wei, Dye sensitized solar cells. Int. J. Mol. Sci. 11, 1103–1113 (2010)

    Article  Google Scholar 

  2. B.C. O’Regan, J.R. Durrant, Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. Acc. Chem. Res. 42, 1799–1808 (2009)

    Article  Google Scholar 

  3. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Article  Google Scholar 

  4. M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127, 16835–16847 (2005)

    Article  Google Scholar 

  5. R.A. Jensen, H. Van Ryswyk, C.X. She, J.M. Szarko, L.X. Chen, J.T. Hupp, Dye-sensitized solar cells: sensitizer-dependent injection into ZnO nanotube electrodes. Langmuir 26, 1401–1404 (2010)

    Article  Google Scholar 

  6. H.J. Snaith, C. Ducati, SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett. 10, 1259–1265 (2010)

    Article  ADS  Google Scholar 

  7. K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara, H. Arakawa, Highly efficient photon-to-electron conversion with mercurochrome sensitized nanoporous oxide semiconductor solar cell. Sol. Energy Mater. Sol. Cells 64, 115–134 (2000)

    Article  Google Scholar 

  8. S.M. Yang, H.Z. Kou, H.J. Wang, K. Cheng, J.C. Wang, Preparation and band energetics of transparent nanostructured SrTiO3 film electrodes. J. Phys. Chem. C 114, 815–819 (2010)

    Article  Google Scholar 

  9. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1, 1–21 (2000)

    Article  Google Scholar 

  10. K. Pirkanniemi, M. Sillanpää, Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 48, 1047–1060 (2002)

    Article  Google Scholar 

  11. Y. Hu, H.L. Tsai, C.L. Huang, Effect of brookite phase on the anatase–rutile transition in titania nanoparticles. J. Eur. Ceram. Soc. 23, 691–696 (2003)

    Article  Google Scholar 

  12. V. Samuel, R. Pasricha, V. Ravi, Synthesis of nanocrystalline rutile. Ceram. Int. 31, 555–557 (2005)

    Article  Google Scholar 

  13. D. Crişan, N. Drăgan, M. Răileanu, M. Crişan, A. Ianculescu, D. Luca, A. Năstuţă, D. Mardare, Structural study of sol–gel Ag/TiO2 films from nanopowders. Appl. Surf. Sci. 257, 4227–4231 (2011)

    Article  ADS  Google Scholar 

  14. B. Shanghavi, P.V. Kamat, Interparticle electron transfer in metal/semiconductor composites. Picosecond dynamics of CdS capped gold nanoclusters. J. Phys. Chem. B 101, 7675–7679 (1997)

    Article  Google Scholar 

  15. H. Chang, C.-H. Chen, M.-J. Kao, H.-H. Hsiao, Effect of core-shell Ag@TiO2 volume ratio on characteristics of TiO2-based DSSCs. J. Nanomater. 2014 (2014). doi:10.1155/2014/264108

  16. P.-C. Huang, T.-Y. Chen, Y.-L. Wang, C.-Y. Wu, T.-L. Lin, Improving interfacial electron transfer and light harvesting in dye-sensitized solar cells by using Ag nanowire/TiO2 nanoparticle composite films. RSC Adv. 5, 70172 (2015)

    Article  Google Scholar 

  17. M.A.K.L. Dissanayak, J.M.K.W. Kumari, G.K.R. Senadeera, C.A. Thotawatthage, Efficiency enhancement in plasmonic dye-sensitized solar cells with TiO2 photoanodes incorporating gold and silver nanoparticles. J. Appl. Electrochem. 46, 47–58 (2016)

    Article  Google Scholar 

  18. Y. Liu, G. She, X. Qi, L. Mu, X. Wang, W. Shi, Contributions of Ag nanowires to the photoelectric conversion efficiency enhancement of TiO2 dye-sensitized solar cells. J. Nanosci. Nanotechnol. 15(6), 7068–7073 (2015)

    Article  Google Scholar 

  19. E.M. Jin, X.G. Zhao, J.-Y. Park, Gu H-B, Enhancement of the photoelectric performance of dye-sensitized solar cells using Ag-doped TiO2 nanofibers in a TiO2 film as electrode. Nanoscale Res. Lett. 7, 97 (2012)

    Article  ADS  Google Scholar 

  20. H.-H. Huang, H. Chang, H.-W. Liu, C.-W. Hsu, C. Chiu, M.-Y. Teng, H.-J. Lai, I.-C. Cheng, J.-Z. Chen, Plasma-etched nanoporous TiO2 using Ag nanoparticle masks: application for photoanodes of dye-sensitized solar cells. Mater. Res. Express 1, 025505 (2014)

    Article  ADS  Google Scholar 

  21. A. Ranjitha, N. Muthukumarasamy, M. Thambidurai, D. Velauthapillai, Enhanced photovoltaic performance of quantum dot sensitized solar cells with Ag-doped TiO2 nanocrystalline thin films. J. Mater. Sci. Mater. Electron. 25, 2724–2729 (2014)

    Article  Google Scholar 

  22. J. Li, X. Chen, N. Ai, J. Hao, Q. Chen, S. Strauf, Y. Shi, Silver nanoparticle doped TiO2 nanofiber dye sensitized solar cells. Chem. Phys. Lett. 514, 141–145 (2011)

    Article  ADS  Google Scholar 

  23. D.J.R. Gutiérreza, N.R. Mathewsb, S.S. Martínezc, Photocatalytic activity enhancement of TiO2 thin films with silver doping under visible light. J. Photochem. Photobiol. A 262, 57–63 (2013)

    Article  Google Scholar 

  24. X. Houa, H. Maa, F. Liua, J. Denga, Y. Aia, X. Zhaoa, D. Maoa, D. Lia, B. Liaoba, Synthesis of Ag ion-implanted TiO2 thin films for antibacterial application and photocatalytic performance. J. Hazard. Mater. 299, 59–66 (2015)

    Article  Google Scholar 

  25. G. Yang, Z. Jiang, H. Shi, T. Xiao, Z. Yan, Preparation of highly visible-light active N-doped TiO2 photocatalyst. J. Mater. Chem. 20, 5301–5309 (2010)

    Article  Google Scholar 

  26. J. Geng, D. Yang, J. Zhu, D. Chen, Z. Jiang, Nitrogen-doped TiO2 nanotubes with enhanced photocatalytic activity synthesized by a facile wet chemistry method. Mater. Res. Bull. 44, 146–150 (2009)

    Article  Google Scholar 

  27. H.K. Park, D.K. Kim, C. Hee, Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4. J. Am. Ceram. Soc. 80, 743–749 (1997)

    Article  Google Scholar 

  28. K. Yeung, S.T. Yau, A.J. Maira, J.M. Coronado, J. Soria, P.L. Yue, The influence of surface properties on the photocatalytic activity of nanostructured TiO2. J. Catal. 219, 107–116 (2003)

    Article  Google Scholar 

  29. Q. Zheng, H. Kang, J. Yun, J. Lee, J.H. Park, S. Baik, Hierarchical construction of self-standing anodized titania nanotube arrays and nanoparticles for efficient and cost-effective front-illuminated dye-sensitized solar cells. ACS Nano 5, 5088–5093 (2011)

    Article  Google Scholar 

  30. J. Bisquert, I.N. Mora-Sero, Simulation of steady-state characteristics of dye-sensitized solar cells and the interpretation of the diffusion length. J. Phys. Chem. Lett. 1, 450–456 (2009)

    Article  Google Scholar 

  31. J. Bisquert, Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. J. Phys. Chem. Chem. Phys. 5, 5360–5364 (2003)

    Article  Google Scholar 

  32. A.R. Andersen, J. Halme, T. Lund, M.I. Asghar, P.T. Nguyen, K. Miettunen, E. Kemppainen, O. Albrektsen, Charge transport and photocurrent generation characteristics in dye solar cells containing thermally degraded N719 dye molecules. J. Phys. Chem. C 115, 15598–15606 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (Arun Kumar Gupta) acknowledges the financial support received from the University Grant Commission, New Delhi, for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.K., Srivastava, P. & Bahadur, L. Improved performance of Ag-doped TiO2 synthesized by modified sol–gel method as photoanode of dye-sensitized solar cell. Appl. Phys. A 122, 724 (2016). https://doi.org/10.1007/s00339-016-0241-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0241-2

Keywords

Navigation