Skip to main content
Log in

Sea grass like arranged TiO2 nanorods sensitized by natural dyes for solar cell applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rutile-phase seagrass-like-arranged TiO2 nanorods have been synthesized by low-temperature template-free hydrothermal method. These TiO2 nanorods have been sensitized by flowers of Sesbania grandiflora, leaves of Camellia sinensis and roots of Rubia tinctorum. The sensitized TiO2 nanorods-based films have been used as photoanode in natural dye-sensitized solar cells. The films were photoelectrochemically active, and the fabricated solar cells had short-circuit photocurrent density (JSC) lying in the range of 3.7–4.7mAcm−2. The efficiency of the fabricated natural dye-sensitized solar cells was found to lie in the range of 0.6–1.036 %, respectively

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Liu, G. Cao, Z. Yang, D. Wang, D. Dubois, X. Zhou, G.L. Graff, L.R. Pederson, J.G. Zhang, ChemSusChem 1(8), 676 (2008)

    Article  Google Scholar 

  2. A. Goetzberger, C. Hebling, Sol. Energy Mater. Sol. Cells 62(1), 1 (2000)

    Article  Google Scholar 

  3. A. Goetzberger, C. Hebling, H.-W. Schock, Mater. Sci. Eng.: R: Reports 40(1), 1 (2003)

    Article  Google Scholar 

  4. K.L. Chopra, P.D. Paulson, V. Dutta, Prog. Photovoltaics Res. Appl. 12(2–3), 69 (2004)

    Article  Google Scholar 

  5. R.B. Bergmann, Appl. Phys. A 69(2), 187 (1999)

    Article  ADS  Google Scholar 

  6. A. Rohatgi, S. Narasimha, S. Kamra, C.P. Khattak, IEEE Electron Device Lett. 17, 401 (1996)

    Article  ADS  Google Scholar 

  7. M.A. Green, Sol. Energy 76(1), 3 (2004)

    Article  ADS  Google Scholar 

  8. J.S. Ward, K. Ramanathan, F.S. Hasoon, T.J. Coutts, J. Keane, M.A. Contreras, T. Moriarty, R. Noufi, Prog. Photovoltaics Res. Appl. 10(1), 41 (2002)

    Article  Google Scholar 

  9. M. Afzaal, P. O’Brien, J. Mater. Chem. 16(17), 1597 (2006)

    Article  Google Scholar 

  10. Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21(41), 4087 (2009)

    Article  Google Scholar 

  11. M.R. Narayan, Renew. Sustain. Energy Rev. 16(1), 208 (2012)

    Google Scholar 

  12. M. Grätzel, J. Photochem. Photobiol. C 4(2), 145 (2003)

    Article  Google Scholar 

  13. K. Wongcharee, V. Meeyoo, S. Chavadej, Sol. Energy Mater. Sol. Cells 91(7), 566 (2007)

    Article  Google Scholar 

  14. V. Shanmugam, S. Manoharan, A. Sharafali, S. Anandan, R. Muruagan, Spectrochim Acta Part A: Mol. Biomol. Spectrosc 135, 947 (2015)

    Article  ADS  Google Scholar 

  15. A. Sacco, L. Rolle, L. Scaltrito, E. Tresso, C.F. Pirri, Appl. Energy 102, 1295 (2013)

    Article  Google Scholar 

  16. A. Yuvapragasam, N. Muthukumarasamy, S. Senthilarasu, J. Photochem. Photobiol. B 148, 223 (2015)

    Article  Google Scholar 

  17. X. Wang, Y. Liu, X. Zhou, B. Li, H. Wang, W. Zhao, H. Huang, C. Liang, Yu. Xiao, Z. Liu, J. Mater. Chem. 22(34), 17531 (2012)

    Article  Google Scholar 

  18. Y.J. Hwang, C. Hahn, B. Liu, P. Yang, Acs Nano 6(6), 5060 (2012)

    Article  Google Scholar 

  19. H.-E. Wang, Z. Chen, Y.H. Leung, C. Luan, C. Liu, Y. Tang, C. Yan, W. Zhang, J.A. Zapien, I. Bello, Appl. Phys. Lett. 96(26), 263104 (2010)

    Article  ADS  Google Scholar 

  20. C. Clementi, B. Doherty, P.L. Gentili, C. Miliani, A. Romani, B.G. Brunetti, A. Sgamellotti, Appl. Phys. A 92(1), 25 (2008)

    Article  ADS  Google Scholar 

  21. J.M.R.C. Fernando, G.K.R. Senadeera, Curr. Sci. 95(5), 10 (2008)

    Google Scholar 

  22. K. Tennakone, G.R.R.A. Kumara, A.R. Kumarasinghe, P.M. Sirimanne, K.G.U. Wijayantha, J. Photochem. Photobiol. A 94(2), 217 (1996)

    Article  Google Scholar 

  23. K. Tennakone, A.R. Kumarasinghe, G.R. Kumara, K.G. Wijayantha, P.M. Sirimanne, J. Photochem. Photobiol. A: Chem. 108(2), 193 (1997)

    Article  Google Scholar 

  24. K. Tennakone, A.R. Kumarasinghe, G.R.R.A. Kumara, K.G.U. Wijayantha, P.M. Sirimane, J. Photochem. Photobiol. A 108, 193 (1997)

    Article  Google Scholar 

  25. J. Ren, S. Meng, C.E. Lekka, E. Kaxiras, J. Phys. Chem. B 112(6), 1845 (2008)

    Article  Google Scholar 

  26. Y. DiIorio, R. Parra, K. Szaciłowski, M.A. Grela, New J. Chem. 37(4), 969 (2013)

    Article  Google Scholar 

  27. J. Mech, M.A. Grela, K. Szaciłowski, Dyes Pigm. 103, 202 (2014)

    Article  Google Scholar 

  28. M. Grätzel, Prog. Photovoltaics Res. Appl. 8(1), 171 (2000)

    Article  Google Scholar 

  29. S.S. Mali, S.K. Desai, D.S. Dalavi, C.A. Betty, P.N. Bhosale, P.S. Patil, Photochem. Photobiol. Sci. 10(10), 1652 (2011)

    Article  Google Scholar 

  30. N. Gokilamani, N. Muthukumarasamy, M. Thambidurai, A. Ranjitha, D. Velauthapillai, Appl. Nanosci. 5(3), 297 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Akila.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akila, Y., Muthukumarasamy, N., Agilan, S. et al. Sea grass like arranged TiO2 nanorods sensitized by natural dyes for solar cell applications. Appl. Phys. A 122, 719 (2016). https://doi.org/10.1007/s00339-016-0236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0236-z

Keywords

Navigation