Skip to main content
Log in

Enhanced absorption in silicon metamaterials waveguide structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metamaterial waveguide structures for silicon solar cells are a novel approach to antireflection coating structures that can be used for the achievement of high absorption in silicon solar cells. This paper investigates numerically the possibility of improving the performance of a planar waveguide silicon solar cell by incorporating a pair of silicon nitride/metamaterial layer between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The optimized layer thicknesses of the pair are determined under the solar spectrum AM1.5 by the effective average reflectance method. The transmission and reflection coefficients are derived by the transfer matrix method for values of metamaterial’s refractive index in visible and near-infrared radiation. In addition, the absorption coefficient is examined for several angles of incidence of the transverse electric polarized (TE), transverse magnetic polarized (TM) and the total (TE&TM) guided waves. Numerical results provide an extremely high absorption. The absorptivity of the structure achieves greater than 98 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Markvart, L. Castafier, Practical handbook of photovoltaics: fundamentals and applications (Elsevier Advanced Technology, Oxford, 2003), pp. 188–196

    Google Scholar 

  2. A. Luque, S. Hegedus, Handbook of photovoltaic science and engineering (Wiley, Chichester, 2003), p. 27

    Book  Google Scholar 

  3. A. Naqavi, Ph.D. Thesis, Ecole Polytechnique Federale De Lausanne, 2009

  4. I.G. Kavakli, K. Kantarli, Turk. J. Phys. 26, 349 (2002)

    Google Scholar 

  5. J. Zhao, M.A. Green, IEEE Trans. Electron Devices 38, 1925 (1991)

    Article  ADS  Google Scholar 

  6. P. Nubile, Thin Solid Films 342, 257 (1999)

    Article  ADS  Google Scholar 

  7. B.S. Richards, Sol. Energy Mater. Sol. Cells (2003). doi:10.1016/S0927-0248(02)00473-7

    Google Scholar 

  8. D. Buie, M.J. McCann, K.J. Weber, C.J. Dey, Sol. Energy Mater. Sol. Cells (2004). doi:10.1016/j.solmat.2003.08.009

    Google Scholar 

  9. M. Beye, M.E. Faye, A. Ndiaye, F. Ndiaye, A.S. Maiga, Res. J. Appl. Sci. Eng. Technol. 6, 412 (2013)

    Google Scholar 

  10. F. Zhan, H.-L. Wang, J.-F. He, J. Wang, S.-S. Huang, H.-Q. Ni, Z.-C. Niu, Chin. Phys. Lett. (2011). doi:10.1088/0256-307X/28/4/047802

    Google Scholar 

  11. V. Veselago, Sov. Phys. Uspekhi 10, 509 (1968)

    Article  ADS  Google Scholar 

  12. P. Markos, C.M. Soukoulis, Wave propagation from electrons to photonic crystals and left-handed materials. (Princeton University Press, New Jersey, 2008), pp. 1–24, pp. 298–317

  13. M. Abadla, S.T. Taya, M.M. Shabat, Sens. Lett. 9, 1 (2011)

    Article  ADS  Google Scholar 

  14. H. Mousa, M.M. Shabat, Int. J. Mod. Phys. B (2011). doi:10.1142/S0217979211052071

    Google Scholar 

  15. M. Ubeid, M.M. Shabat, Numerical study of a structure containing left-handed material waveguide. Indian J. Phys. (2012). doi:10.1007/s12648-012-0018-1

    Google Scholar 

  16. C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. (2012). doi:10.1002/adma.201200674

    Google Scholar 

  17. J. Li, Y. Chen, Y. Liu, Adv. Appl. Math. Mech. 3, 702 (2011)

    MathSciNet  Google Scholar 

  18. Y. Liu, Y. Chen, J. Li, T. Hung, J. Li, Sol. Energy 86, 1586 (2012)

    Article  ADS  Google Scholar 

  19. K.B. Alici, E. Ozbay, Proc. SPIE, (2010) doi:10.1117/12.860223

  20. F. Dincer, O. Akgol, M. Karaaslan, E. Unal, C. Sabah, Prog. Electromagn. Res. 144, 93 (2014)

    Article  Google Scholar 

  21. H.M. Mousa, M.M. Shabat, Energy Procedia 74, 597 (2015)

    Article  Google Scholar 

  22. E. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985), pp. 564–566

    Google Scholar 

  23. D. Bouhafs, A. Moussi, A. Chikouche, J.M. Ruiz, Sol. Energy Mater. Sol. Cells 52, 79 (1998)

    Article  Google Scholar 

  24. F. Zhan, Z. Li, X. Shen, H. He, J. Zeng, Sci. World J. 21, 1 (2014)

    Google Scholar 

  25. Z. Feng, H. Ji-Fang, S. Xiang-Jun, L. Mi-Feng, N. Hai-Qiao, X. Ying-Qiang, N. Zhi-Chuan, Chin. Phys. B 21, 037802 (2012)

    Article  ADS  Google Scholar 

  26. K.L. Chopra, S.R. Das, Thin Film Solar Cell (Plenum Press, New York, 1983), pp. 512–513

    Book  Google Scholar 

  27. M.M. Shabat, M.F. Ubeid, Energy Procedia 50, 314 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houria Hamouche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamouche, H., Shabat, M.M. Enhanced absorption in silicon metamaterials waveguide structure. Appl. Phys. A 122, 685 (2016). https://doi.org/10.1007/s00339-016-0206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0206-5

Keywords

Navigation