Skip to main content
Log in

Tuning electronic structure of SnS2 nanosheets by vertical electric field: a first-principles investigation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Based on density functional theory, we investigated band gap tuning in transition-metal dichalcogenides SnS2 nanosheets by external electric fields applied perpendicular to the layers. We show that the fundamental band gap value of 2H and 4H SnS2 multilayer structures continuously decreases with increasing strength of applied electric fields, eventually rendering them metallic. We interpret our results in the light of the giant Stark effect and obtain a robust relationship, which is essentially characterized by the interlayer spacing, for the rate of band gap change with applied external field. And it is also valid for monolayer structure, though it need very large electric filed to make the gap change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. McCann, Phys. Rev. B 74, 161403 (2006)

    Article  ADS  Google Scholar 

  2. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature (London) 459, 820 (2009)

    Article  ADS  Google Scholar 

  3. T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science 313, 951 (2006)

    Article  ADS  Google Scholar 

  4. F. Xia, D.B. Farmer, Y. Lin, P. Avouris, Nano Lett. 10, 715 (2010)

    Article  ADS  Google Scholar 

  5. J. Qi, X. Li, X. Qian, J. Feng, Appl. Phys. Lett. 102, 173112 (2013)

    Article  ADS  Google Scholar 

  6. N. Zibouche, P. Philipsen, T. Heine, A. Kuc, Phys. Chem. Chem. Phys. 16, 11251 (2014)

    Article  Google Scholar 

  7. Q.H. Liu, L.Z. Li, Y.F. Li, Z.X. Giao, Z.F. Chen, J. Lu, J. Phys. Chem. C 116, 21556 (2012)

    Article  Google Scholar 

  8. A. Ramasubramaniam, D. Naveh, E. Towe, Phys. Rev. B 84, 205325 (2011)

    Article  ADS  Google Scholar 

  9. J. Xiao, M.Q. Long, X.M. Li, Q.T. Zhang, H. Xu, K.S. Chan, J. Phys. Condens. Matter 26, 405302 (2014)

    Article  Google Scholar 

  10. N. Zibouche, P. Philipsen, A. Kuc, T. Heine, Phys. Rev. B 90, 125440 (2014)

    Article  ADS  Google Scholar 

  11. Z. Yang, J. Ni, J. Appl. Phys. 107, 104301 (2010)

    Article  ADS  Google Scholar 

  12. Yafei Li, Zhongfang Chen, J. Phys. Chem. C 118, 1148 (2014)

    Article  Google Scholar 

  13. Y. Huang, E. Sutter, J.T. Sadowski, M. Cotlet, O.L.A. Monti, D.A. Racke, M.R. Neupane, D. Wickramaratne, R.K. Lake, B.A. Parkinson, P. Sutter, ACS Nano 8(10), 10743 (2014)

    Article  Google Scholar 

  14. B. Yang, X.Q. Zuo, H. Xiao, L. Zhou, X. Yang, G. Li, M. Wu, Y. Ma, S. Jin, X. Chen, Mater. Lett. 133, 197 (2014)

    Article  Google Scholar 

  15. X. Liu, H.L. Zhao, J.Y. Xie, K. Wang, P.P. Lv, C.H. Gao, Prog. Chem. 26, 1586 (2014)

    Google Scholar 

  16. R. Wei, J. Hu, T. Zhou, X. Zhou, J. Liu, J. Li, Acta Mater. 66, 163 (2014)

    Article  Google Scholar 

  17. P. Chen, Y. Su, H. Liu, Y. Wang, A.C.S. Appl, Mater. Interfaces 5, 12073 (2013)

    Article  Google Scholar 

  18. M. Zhou, X.W. Lou, Y. Xie, Nanotoday 8, 598 (2013)

    Article  Google Scholar 

  19. Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, Y. Xie, Angew. Chem. Int. Ed. 51, 8727 (2012)

    Article  Google Scholar 

  20. X. An, J.C. Yu, J. Tang, J. Mater. Chem. A 2, 1000 (2014)

    Article  Google Scholar 

  21. H.L. Zhuang, R.G. Hennig, Phys. Rev. B 88, 115314 (2013)

    Article  ADS  Google Scholar 

  22. C.X. Xia, Y.T. Peng, T.X. Wang, S.Y. Wei, Y. Jia, Chem. Phys. Chem. Chem. Phys. 16, 19674 (2014)

    Article  Google Scholar 

  23. K. Chang, Z. Wang, G. Huang, H. Li, W. Chen, J.Y. Lee, J. Power Sources 201, 259 (2012)

    Article  Google Scholar 

  24. J. Li, P. Wu, F. Lou, P. Zhang, Y. Tang, Y. Zhou, T. Lu, Electrochim. Acta 111, 862 (2013)

    Article  Google Scholar 

  25. T.S. Pan, D. De, J. Manongdo, A.M. Guloy, V.G. Hadjiev, Y. Lin, H.B. Peng, Appl. Phys. Lett. 103, 093108 (2013)

    Article  ADS  Google Scholar 

  26. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  27. C.X. Xia, Y. Peng, S. Wei, Y. Jia, Acta Mater. 61, 7720 (2013)

    Article  Google Scholar 

  28. D. Golberg, Y. Bando, Y. Huang, T. Terao, M. Mitome, C.C. Tang, C.Y. Zhi, ACS Nano 4, 2979 (2010)

    Article  Google Scholar 

  29. http://www.quantumwise.com

  30. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  31. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  32. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  33. S. Grimmer, J. Comput. Chem. 27, 1787 (2006)

    Article  Google Scholar 

  34. F. Zheng, Z. Liu, J. Wu, W. Duan, B.-L. Gu, Phys. Rev. B 78, 085423 (2008)

    Article  ADS  Google Scholar 

  35. K.H. Khoo, M.S.C. Mazzoni, S.G. Louie, Phys. Rev. B 69, 201401(R) (2004)

    Article  ADS  Google Scholar 

  36. M. Ishigami, J.D. Sau, S. Aloni, M.L. Cohen, A. Zettl, Phys. Rev. Lett. 94, 056804 (2005)

    Article  ADS  Google Scholar 

  37. L. Kou, C. Li, Z. Zhang, W. Guo, J. Phys. Chem. C 114, 1326 (2010)

    Article  Google Scholar 

  38. B. Sahu, H. Min, S.K. Banerjee, Phys. Rev. B 82, 115426 (2010)

    Article  ADS  Google Scholar 

  39. X. Dai, W. Li, T. Wang, X. Wang, C. Zhai, J. Appl. Phys. 117, 084310 (2015)

    Article  ADS  Google Scholar 

  40. Q. Yue, S.L. Chang, J. Kang, X. Zhang, Z.Z. Shao, S.Q. Qin, J.B. Li, J. Phys. Condens. Matter 24, 335501 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by The High Performance Computing Center of Henan Normal University; The Basic Research projects with Cutting-Edge Technology of Henan Province (No. 122300413208); Fund for Young Teachers in Colleges of Henan province (No. 01026611010); The Nature Science Foundation of China (Nos. U1304518, U1304109, 11204064, 11304084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Wang, T., Xia, C. et al. Tuning electronic structure of SnS2 nanosheets by vertical electric field: a first-principles investigation. Appl. Phys. A 122, 684 (2016). https://doi.org/10.1007/s00339-016-0164-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0164-y

Keywords

Navigation