Advertisement

Applied Physics A

, 122:616 | Cite as

Representation of type I heterostructure junctionless tunnel field effect transistor for high-performance logic application

  • Rouzbeh Molaei Imen Abadi
  • Seyed Ali Sedigh Ziabari
Article

Abstract

In this paper, a gate-all-around junctionless tunnel field effect transistor (JLTFET) based on heterostructure of compound and group III–V semiconductors is introduced and simulated. In order to blend the high tunneling efficiency of narrow band gap material JLTFETs and the high electron mobility of III–V JLTFETs, a type I heterostructure junctionless TFET adopting Ge–Al x Ga1−x As–Ge system has been optimized by numerical simulation in terms of aluminum (Al) composition. To improve device performance, we considered a nanowire structure, and it was illustrated that high-performance logic technology can be achieved by the proposed device. The optimal Al composition founded to be around 20 % (x = 0.2). The numerical simulation results demonstrate that the proposed device has low leakage current I OFF of ~1.9 × 10−17, I ON of 4 µA/µm, I ON/I OFF current ratio of 1.7 × 1011 and subthreshold swing SS of 12.6 mV/decade at the 40 nm gate length and temperature of 300 K.

Keywords

GaSb Gate Voltage Subthreshold Swing High Tunneling Electric Field Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Anwar, I. Hossain, A comparative numerical simulation of a nanoscaled body on insulator FinFET, in Proceedings of the 27th International Conference on Microelectronics (MIEL) (2010), pp. 16–19Google Scholar
  2. 2.
    R. Coquand et al. Strain-induced performance enhancement of tri-gate and omega-gate nanowire fets scaled down to 10 nm width, in IEEE Symposium on VLSI Technology Digest of Technical Papers (2012), pp. 13–14Google Scholar
  3. 3.
    J.Y. Song et al., Design optimization of gate-all-around (GAA) MOSFETs. IEEE Trans. Nanotechnol. 5(3), 186–191 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    J.-P. Colinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, R. Murphy, Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    C.-W. Lee, I. Ferain, A. Afzalian, R. Yan, N.D. Akhavan, P. Razavi, J.P. Colinge, Performance estimation of junctionless multigate transistors. Solid State Electron. 54(2), 97–103 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    W.Y. Choi, B.-G. Park, J.D. Lee, T.-J. King Liu, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Dev. Lett. 28, 743–745 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    Qin Zhang, Wei Zhao, Alan Seabaugh, Low-subthreshold-swing tunnel transistors. IEEE Electron Dev. Lett. 27, 297–300 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    O.M. Nayfeh, C.N. Chleirigh, J. Hennessy, L. Gomez, J.L. Hoyt, D.A. Antoniadis, Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions. IEEE Electron Dev. Lett. 29, 1074–1077 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Khatami, K. Banerjee, Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Electron Dev. Lett. 56, 2752–2761 (2009)CrossRefGoogle Scholar
  10. 10.
    U. E. Avci, I. A. Young, Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9 nm gate-length, in Proceedings of the IEEE International Electron Device Meeting (IEDM), Washington, DC, USA (2013), pp. 4.3.1–4.3.4Google Scholar
  11. 11.
    M. Luisier, G. Klimeck, Performance comparisons of tunneling field-effect transistors made of InSb, Carbon, and GaSb–InAs broken gap heterostructures, in Proceedings of the IEEE International Electron Device Meeting (IEDM), Baltimore, MD, USA (2009), pp. 1–4Google Scholar
  12. 12.
    A.C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)CrossRefGoogle Scholar
  13. 13.
    L. Knoll et al., Inverters with strained Si nanowire complementary tunnel field-effect transistors. IEEE Electron Dev. Lett. 34(6), 813–815 (2013)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    K. Ganapathi, Y. Yoon, S. Salahuddin, Analysis of InAs vertical and lateral band-to-band tunneling transistors: leveraging vertical tunneling for improved performance. Appl. Phys. Lett. 97, 033504 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energyefficient electronic switches. Nature 479(7373), 329–337 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    B. Ghosh, M.W. Akram, Junctionless tunnel field effect transistor. IEEE Electron Dev. Lett. 35(5), 584–586 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    P.K. Asthana, B. Ghosh, S.B. Rahi et al., Improved performance of junctionless tunnel filed effect transistor with Si and SiGe hetro-structure for ultra low power application. RSC Adv. (2015). doi: 10.1039/C5RA03301B Google Scholar
  18. 18.
    P.K. Asthana, High performance 20 nm GaSb/InAs junctionless fiels effect transistor for low power supply. J. Semicond. 36(2), 1–6 (2015)CrossRefGoogle Scholar
  19. 19.
    B. Ghosh, P. Bal, P. Mondal, A junctionless tunnel field effect transistor with low subthreshold slope. J. Comput. Electron. (2013). doi: 10.1007/s10825-013-0450-2 Google Scholar
  20. 20.
    Y. Taur, T.H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, 1998)Google Scholar
  21. 21.
    R. Eisberg, R. Resnick, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, 2nd edn. (Wiley Student Edition, New York, 2012)Google Scholar
  22. 22.
    W. Long, H. Ou, J.M. Kuo et al., Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron. Dev. 46(5), 865 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    K.Y. Na, Y.S. Kim, Silicon complementary metal–oxide–semiconductor field-effect transistors with dual work function gate. Jpn. J. Appl. Phys. 45(12), 9033 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    C.H. Wang, H. Chu, Y.S. Lai, et al., Dual work-function metal gates. US Patent, No. 73 81619B2, Jun. 3, 2008Google Scholar
  25. 25.
    U. Konig et al., N- and p-type Si–SiGe hetero FETs, in IEEE International Symposium on High Performance Electron Devices for Microwave and Optoelectronic Applications, vol. 8 (2000), pp. 1–7Google Scholar
  26. 26.
    B.M. Borg, K.A. Dick, B. Ganjipou et al., InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett. 10(10), 4080 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    K. Boucart, A.M. Ionescu, Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans. Electron Dev. 54(7), 1725–1733 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    Silvaco, Version 5.15.32.R. (2009). http://www.silvaco.com
  29. 29.
    K. Boucart, A.M. Ionescu, Double-gate tunnel FET with High-κ gate dielectric. IEEE Trans. Electron Dev. 54(7), 1725–1733 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    A. Villalon et al., First demonstration of strained SiGe nanowires TFETs with ION beyond 700 μA/μm, in Proceedings Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA (2014), pp. 66–67Google Scholar
  31. 31.
    W. Hansch, T. Vogelsang, R. Kirchner, M. Orlowski, Carrier transport near the Si/SiO2 interface of a MOSFET. Solid State Electron. 32(10), 839–849 (1989)ADSCrossRefGoogle Scholar
  32. 32.
    A. Schenk, A model for the field and temperature dependence of SRH lifetimes in silicon. Solid State Electron. 35(11), 1585–1596 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    C. Wang, S.Y. Chou, Self-aligned fabrication of 10 nm wide asymmetric trenches for Si/SiGe heterojunction tunneling field effect transistors using nanoimprint lithography, shadow evaporation, and etching. J. Vac. Sci. Technol. B 27(6), 2790–2794 (2009)CrossRefGoogle Scholar
  34. 34.
    O.M. Nayfeh, C.N. Chleirigh, J. Hennessy, L. Gomez, J.L. Hoyt, D.A. Antoniadis, Design of tunneling field-effect transistors using strained-silicon/strained-germanium type-II staggered heterojunctions. IEEE Electron Dev. Lett. 29(9), 1074–1077 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rouzbeh Molaei Imen Abadi
    • 1
  • Seyed Ali Sedigh Ziabari
    • 1
  1. 1.Department of Electrical Engineering, Rasht BranchIslamic Azad UniversityRashtIran

Personalised recommendations