Skip to main content
Log in

Observation of enhanced field emission properties of Au/TiO2 nanocomposite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Simple and low-cost method of thermal annealing was used to decorate Gold (Au) nanoparticles on aligned TiO2 nanotubes. The aligned TiO2 nanotubes were decorated by Au nanoparticles with an average diameter of 9, 18 and 28 nm (aligned TiO2 nanotubes referred as specimen A and TiO2 nanotubes decorated by Au nanoparticles with average diameter of 9, 18 and 28 nm are referred as specimen B, C and D, respectively). The detailed characterization such as structural, morphological and elemental analysis of TiO2 and Au/TiO2 nanocomposite have been carried out using X-ray diffraction, field emission scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy and Raman spectroscopy. Furthermore, the meticulous comparative field emission characteristics of the aligned TiO2 nanotubes and Au/TiO2 nanocomposite have been performed. The turn-on field defined for the current density of 10 μA/cm2 has been found to be 3.9, 2.8, 3.2 and 3.7 V/μm for specimen A, B, C and D, respectively. The observed low turn-on field of specimen B has been found to be superior than the other semiconducting nanocomposites reported in the literature. The emission current stability over a period of 3 h is found to be better for all the specimens. To the best of our knowledge, a systematic field emission study of Au/TiO2 nanocomposite has not been explored. The observed superior field emission study of Au/TiO2 nanocomposite indicates their possible use in micro/nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.N.R. Rao, S.R.C. Vivekchand, K. Biswasa, A. Govindaraja, Dalton Trans. 34, 3728 (2007)

    Article  Google Scholar 

  2. R.K. Jha, P.K. Jha, K. Chaudhury, S.V.S. Rana, S.K. Guha, Nano Rev. 5, 22762 (2014)

    Article  Google Scholar 

  3. R.W. Siegel, in Physics of New Materials, Chap. 4, ed. by F.E. Fujita (Springer, Berlin, 1994)

    Google Scholar 

  4. R.P. Andre, R.S. Averbacka, W.L. Browna, L.E. Brusa, W.A. Goddard, A. Kaldora, S.G. Louiea, M. Moscovitsa, P.S. Peercya, S.J. Rileya, R.W. Siegela, F. Spaepena, Y. Wanga, J. Mater. Res. 4, 704 (1989)

    Article  ADS  Google Scholar 

  5. H. Gleiter, Z. Metall. 86, 78 (1995)

    Google Scholar 

  6. S. Yoriya, N. Bao, C.A. Grimes, J. Mater. Chem. 21, 13909 (2011)

    Article  Google Scholar 

  7. J. Yan, F. Zhou, J. Mater. Chem. 21, 9406 (2011)

    Article  Google Scholar 

  8. P.V. Kamat, Pure Appl. Chem. 74, 1693 (2002)

    Article  Google Scholar 

  9. I. Paramasivam, J.M. Macak, P. Schmuki, Electrochem. Commun. 10, 71 (2008)

    Article  Google Scholar 

  10. X. He, Y. Cai, H. Zhang, C. Liang, J. Mater. Chem. 21, 475 (2011)

    Article  Google Scholar 

  11. C. Ye, Y. Bando, X. Fang, G. Shen, D. Golberg, J. Phys. Chem. C 111, 12673 (2007)

    Article  Google Scholar 

  12. F.J. Sheini, J. Singh, O.N. Srivasatva, D.S. Joag, M.A. More, Appl. Surf. Sci. 256, 2110 (2010)

    Article  ADS  Google Scholar 

  13. M.C. Daniel, D. Astruc, Chem. Rev. 104, 293 (2004)

    Article  Google Scholar 

  14. N. Wang, T. Tachikawa, T. Majima, Chem. Sci. 2, 891 (2011)

    Article  Google Scholar 

  15. Q. Wang, T. Butburee, X. Wu, H. Chen, G. Liu, L. Wang, J. Mater. Chem. A 1, 13524 (2013)

    Article  Google Scholar 

  16. L.A. Gautier, V.L. Borgne, N. Delegan, R. Pandiyan, M.A. Khakani, Nanotechnology 26, 045706 (2015)

    Article  ADS  Google Scholar 

  17. F. Li, L. Zhang, S. Wu, Z. Li, Y. Wang, X. Liu, Mater. Lett. 145, 209 (2015)

    Article  Google Scholar 

  18. F. Li, S. Wu, L. Zhang, Z. Li, Appl. Phys. A 120, 1383 (2015)

    Article  ADS  Google Scholar 

  19. G. Mittal, I. Lahiri, J. Phys. D Appl. Phys. 47, 323001 (2014)

    Article  Google Scholar 

  20. J.B. Chen, C.W. Wang, B.H. Ma, Y. Li, J. Wang, R.S. Guo, W.M. Liu, Thin Solid Films 517, 4390 (2009)

    Article  ADS  Google Scholar 

  21. X. Fang, Y. Bando, U.K. Gautam, C. Ye, D. Golberg, J. Mater. Chem. 18, 509 (2008)

    Article  Google Scholar 

  22. T. Zhai, L. Li, Y. Ma, M. Liao, X. Wang, X. Fang, J. Yao, Y. Bando, D. Golberg, Chem. Soc. Rev. 40, 2986 (2011)

    Article  Google Scholar 

  23. B.H. Ma, Y. Li, C.W. Wang, J. Wang, J.B. Chen, W.M. Liu, Acta Phys. Sin. 57, 5800 (2008)

    Google Scholar 

  24. G.P. Patil, V.S. Bagal, C.R. Mahajan, V.R. Chaudhari, S.R. Suryavanshi, M.A. More, P.G. Chavan, Vacuum 123, 167 (2016)

    Article  ADS  Google Scholar 

  25. L.C. Almeida, M.V.B. Zanoni, J. Braz. Chem. Soc. 25, 579 (2014)

    Google Scholar 

  26. Z.Y. Zou, Q. Wang, X.J. Chen, S.L. Qu, J. Appl. Phys. 105, 103114 (2009)

    Article  ADS  Google Scholar 

  27. G.A. Rance, D.H. Marsh, S.J. Bourne, T.J. Reade, A.N. Khlobystov, ACS Nano 4(8), 4920 (2010)

    Article  Google Scholar 

  28. H. Kim, C. Choi, J. Khamwannah, S.Y. Noh, Y. Zhang, T.Y. Seong, S. Jin, J. Renew. Sustain. Energy 5, 053104 (2013)

    Article  Google Scholar 

  29. J. Wu, S. Lo, K. Song, B.K. Vijayan, W. Li, K.A. Gray, V.P. Dravid, J. Mater. Res. 26, 1646 (2011)

    Article  ADS  Google Scholar 

  30. Y.M. Chang, M.L. Lin, T.Y. Lai, H.Y. Lee, C.M. Lin, Y.C. Wu, J.Y. Juang, A.C.S. Appl, Mater. Interfaces 4, 6676 (2012)

    Article  Google Scholar 

  31. P. Stefanov, M. Shipochka, P. Stefchev, Z. Raicheva, V. Lazarova, L. Spassov, J. Phys. Conf. Ser. 100, 012039 (2008)

    Article  ADS  Google Scholar 

  32. N. Kruse, S. Chenakin, Appl. Catal. A 39, 367 (2011)

    Article  Google Scholar 

  33. X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  34. T. Maiyalagan, B. Viswanathan, U.V. Varadaraju, Bull. Mater. Sci. 29(7), 705 (2006)

    Google Scholar 

  35. Z. Shao, Z. Tian, J. Pang, G. Feng, B. Guo, C. Zeng, Y. Yang, S. Liu, Q. Wang, Mater. Res. Express 1, 045033 (2014)

    Article  ADS  Google Scholar 

  36. C.C. Wang, K.W. Wang, T.P. Perng, Appl. Phys. Lett. 96, 143102 (2010)

    Article  ADS  Google Scholar 

  37. G. Liu, F. Li, D.W. Wang, D.M. Tang, C. Liu, X. Ma, G.Q. Lu, H.M. Cheng, Nanotechnology 19, 025606 (2008)

    Article  ADS  Google Scholar 

  38. L.Q. Wang, C.W. Wang, J.B. Chen, R.S. Guo, F. Zhou, W.M. Liu, Thin Solid Films 519, 8173 (2011)

    Article  ADS  Google Scholar 

  39. R.P. Antony, T. Mathews, K. Panda, B. Sundaravel, S. Dash, A.K. Tyagi, J. Phys. Chem. C 116, 16740 (2012)

    Article  Google Scholar 

  40. S.R. Suryawanshi, A.K. Singh, M. Deo, D.J. Late, S. Sinha, M.A. More, Cryst. Eng. Commun. 17, 3936 (2015)

    Article  Google Scholar 

  41. R. Devarapalli, R. Kashid, A. Deshmukh, P. Sharma, M. Das, M. More, M. Shelke, J. Mater. Chem. C. 1, 5040 (2013)

    Article  Google Scholar 

  42. S. Wang, Fundamentals of Semiconductor Theory and Device Physics, vol. 131 (Prentice-Hall Inc., New Jersey, 1989)

    Google Scholar 

  43. G. Sinha, S.K. Panda, A. Datta, P.G. Chavan, D.R. Shinde, M.A. More, D.S. Joag, A. Patra, A.C.S. Appl, Mater. Interfaces 3, 2130 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

GPP and PGC sincerely thank to SERB DST, Government of India (Ref. No.: SB/EMEQ-208/2013 dated 23/08/2013) for financial support. GPP and PGC also thank UGS SAP-BSR Phase-III project for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmakar G. Chavan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patil, G.P., Bagal, V.S., Suryawanshi, S.R. et al. Observation of enhanced field emission properties of Au/TiO2 nanocomposite. Appl. Phys. A 122, 560 (2016). https://doi.org/10.1007/s00339-016-0090-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0090-z

Keywords

Navigation