Skip to main content
Log in

Magnetic and electric responses from artificial nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Random silver nanowires embedded in Ni-doped zirconia (Zr0.9Ni0.1O y ) dielectric were prepared by co-precipitation technique. The morphology and structure properties of Ag/Zr0.9Ni0.1O y (AZNx; where “x” is [Ag]/[Zr0.9Ni0.1O y ] = x) nanocomposites were studied by X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques. Interesting negative permittivity and permeability behaviors of AZNx are found. The experimental data of the negative permittivity are fitted well by Drude model. These results have important implications for the realization of double-negative properties in AZNx as a promising candidate for the double-negative materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Tanabe, Y. Nakagawa, T. Okamoto, M. Haraguchi, T. Isu, G. Shinomiya, Erratum to: fabrication and evaluation of photonic metamaterial crystal. Appl. Phy. A 112, 613 (2013)

    Article  ADS  Google Scholar 

  2. R. Gholipur, A. Bahari, Random nanocomposites as metamaterials: preparation and investigations at microwave region. Opt. Mater. 50, 175 (2015)

    Article  ADS  Google Scholar 

  3. W. Zhu, X. Zhao, B. Gong, L. Liu, B. Su, Optical metamaterial absorber based on leaf-shaped cells. Appl. Phy. A 112, 147 (2010)

    Google Scholar 

  4. S. Linden, C. Enkrich, M. Wegener, J.F. Zhou, T. Koschny, C.M. Soukoulis, Magnetic response of metamaterials at 100 terahertz. Science 306, 1351 (2004)

    Article  ADS  Google Scholar 

  5. W.S. Cai, U.K. Chettiar, H.K. Yuan, V.C. de Silva, A.V. Kildishev, V.P. Drachev, V.M. Shalaev, Metamagnetics with rainbow colors. Opt. Express 15, 3333 (2007)

    Article  ADS  Google Scholar 

  6. V.M. Shalaev, W.S. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356 (2005)

    Article  ADS  Google Scholar 

  7. S. Zhang, W.J. Fan, N.C. Panoiu, K.J. Malloy, R.M. Osgood, S.R.J. Brueck, Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005)

    Article  ADS  Google Scholar 

  8. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892 (2006)

    Article  ADS  Google Scholar 

  9. G. Dolling, M. Wegener, C.M. Soukoulis, S. Linden, Negative-index metamaterial at 780 nm wavelength. Opt. Lett. 32, 53 (2007)

    Article  ADS  Google Scholar 

  10. U.K. Chettiar, A.V. Kildishev, H.K. Yuan, W.S. Cai, S.M. Xiao, V.P. Drachev, V.M. Shalaev, Dual-band negative index metamaterial: double negative at 813 nm and single negative at 772 nm. Opt. Lett. 32, 1671 (2007)

    Article  ADS  Google Scholar 

  11. E. Plum, V.A. Fedotov, A.S. Schwanecke, N.I. Zheludev, Y. Chen, Giant optical gyrotropy due to electromagnetic coupling. Appl. Phys. Lett. 90, 223113 (2007)

    Article  ADS  Google Scholar 

  12. M. Decker, M.W. Klein, M. Wegener, S. Linden, Circular dichroism of planar chiral magnetic metamaterials. Opt. Lett. 32, 856 (2007)

    Article  ADS  Google Scholar 

  13. M.W. Klein, C. Enkrich, M. Wegener, S. Linden, Second-harmonic generation from magnetic metamaterials. Science 313, 502 (2006)

    Article  ADS  Google Scholar 

  14. M.W. Klein, M. Wegener, N. Feth, S. Linden, Experiments on second- and third harmonic generation from magnetic metamaterials. Opt. Express 15, 5238 (2007)

    Article  ADS  Google Scholar 

  15. A.K. Popov, V.M. Shalaev, Negative-index metamaterials: second-harmonic generation, Manley-Rowe relations and parametric amplification. Appl. Phys. B 84, 131 (2006)

    Article  ADS  Google Scholar 

  16. A.K. Popov, V.M. Shalaev, Compensating losses in negative-index metamaterials by optical parametric amplification. Opt. Lett. 31, 2169 (2006)

    Article  ADS  Google Scholar 

  17. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534 (2005)

    Article  ADS  Google Scholar 

  18. T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, R. Hillenbrand, Near-field microscopy through a SiC superlens. Science 313, 1595 (2006)

    Article  Google Scholar 

  19. Z.W. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Far-field optical hyperlens magnifying subdiffraction-limited objects. Science 315, 1686 (2007)

    Article  ADS  Google Scholar 

  20. Z.W. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, X. Zhang, Far-field optical superlens. Nano Lett. 7, 403 (2007)

    Article  ADS  Google Scholar 

  21. W.S. Cai, D.A. Genov, V.M. Shalaev, Superlens based on metal-dielectric composites. Phys. Rev. B 72, 193101 (2005)

    Article  ADS  Google Scholar 

  22. Z. Jacob, L.V. Alekseyev, E. Narimanov, Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247 (2006)

    Article  ADS  Google Scholar 

  23. J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science 312, 1780 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977 (2006)

    Article  ADS  Google Scholar 

  25. W.S. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Optical cloaking with metamaterials. Nat. Photonics 1, 224 (2007)

    Article  ADS  Google Scholar 

  26. W.S. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, G.W. Milton, Nonmagnetic cloak with minimized scattering. Appl. Phys. Lett. 91, 111105 (2007)

    Article  ADS  Google Scholar 

  27. W.S. Cai, U.K. Chettiar, A.V. Kildishev, V.M. Shalaev, Designs for optical cloaking with high-order transformations. Opt. Express 16, 5444 (2008)

    Article  ADS  Google Scholar 

  28. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Extremely low frequency plasmons in metallic structures. Phys. Rev. Lett. 76, 4773 (1996)

    Article  ADS  Google Scholar 

  29. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)

    Article  ADS  Google Scholar 

  30. J.B. Pendry, L. Martin-Moreno, F.J. Garcia-Vidal, Mimicking surface plasmons with structured surfaces. Science 305, 847 (2004)

    Article  ADS  Google Scholar 

  31. A.V. Krasavin, K.F. MacDonald, A.S. Schwanecke, N.I. Zheludev, Gallium/aluminum nanocomposite material for nonlinear optics and nonlinear plasmonics. Appl. Phys. Lett. 89, 031118 (2006)

    Article  ADS  Google Scholar 

  32. T. Kume, T. Amano, S. Hayashi, K. Yamamoto, Attenuated total reflection spectroscopy of Ag–SiO2 composite films. Thin Solid Films 264, 115 (1995)

    Article  ADS  Google Scholar 

  33. A.K. Sarychev, V.M. Shalaev, Electromagnetic field fluctuations and optical nonlinearities in metal-dielectric composites. Phys. Rep. 335, 276 (2000)

    Article  ADS  Google Scholar 

  34. V.A. Shubin, A.K. Sarychev, J.P. Clerc, V.M. Shalaev, Local electric and magnetic fields in semicontinuous metal films: beyond the quasistatic approximation. Phys. Rev. B 62, 11230 (2000)

    Article  ADS  Google Scholar 

  35. W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2009)

    Google Scholar 

  36. V.M. Shalaev, A.K. Sarychev, Nonlinear optics of random metal-dielectric films. Phys. Rev. B 57, 13265 (1998)

    Article  ADS  Google Scholar 

  37. A.K. Sarychev, V.A. Shubin, V.M. Shalaev, Anderson localization of surface plasmons and nonlinear optics of metal-dielectric composites. Phys. Rev. B 60, 16389 (1999)

    Article  ADS  Google Scholar 

  38. D.J. Bergman, D. Stroud, Physical properties of macroscopically inhomogeneous media. Solid State Phys. 46, 147 (1992)

    Google Scholar 

  39. M.D. Thoreson, J. Fang, A.V. Kildishev, L.J. Prokopeva, P. Nyga, U.K. Chettiar, V.M. Shalaev, V.P. Drachev, Fabrication and realistic modeling of three-dimensional metal-dielectric composites. J. Nanophotonics 5, 051513 (2011)

    Article  ADS  Google Scholar 

  40. T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, Low frequency plasmonic state and negative permittivity spectra of coagulated Cu granular composite materials in the percolation threshold. Appl. Phys. Lett. 102, 181904 (2013)

    Article  ADS  Google Scholar 

  41. L. Shi, L. Gao, S. He, B. Li, Superlens from metal-dielectric composites of nonspherical particles. Phys. Rev. B 76, 045116 (2007)

    Article  ADS  Google Scholar 

  42. X. Li, F. Zhuang, Multilayered structures with high subwavelength resolution based on the metal-dielectric composites. J. Opt. Soc. Am. A: 26, 2521 (2009)

    Article  ADS  Google Scholar 

  43. L. Shi, L. Gao, Subwavelength imaging from a multilayered structure containing interleaved nonspherical metal-dielectric composites. Phys. Rev. B 77, 195121 (2008)

    Article  ADS  Google Scholar 

  44. Y. Xiong, Z.W. Liu, S. Durant, H. Lee, C. Sun, X. Zhang, Tuning the far-field superlens: from UV to visible. Opt. Express 15, 7095 (2007)

    Article  ADS  Google Scholar 

  45. U.K. Chettiar, A.V. Kildishev, T.A. Klar, V.M. Shalaev, Negative index metamaterial combining magnetic resonators with metal films. Opt. Express 14, 7872 (2006)

    Article  ADS  Google Scholar 

  46. L. Menon, W.T. Lu, A.L. Friedman, S.P. Bennett, D. Heiman, S. Sridhar, Negative index metamaterials based on metal-dielectric nanocomposites for imaging applications. Appl. Phys. Lett. 93, 123117 (2008)

    Article  ADS  Google Scholar 

  47. J.S. Parramon, V. Janicki, H. Zorc, On the dielectric function tuning of random metal-dielectric nanocomposites for metamaterial applications. Opt. Express 18, 26915 (2010)

    Article  ADS  Google Scholar 

  48. V.M. Shalaev, A.K. Sarychev, Nonlinear optics of random metal-dielectric films. Phys. Rev. B 57(20), 13265 (1998)

    Article  ADS  Google Scholar 

  49. S. Arslanagić, T.V. Hansen, N.A. Mortensen, A.H. Gregersen, O. Sigmund, R.W. Ziolkowski, O. Breinbjerg, A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization. IEEE Antennas Propag. Mag. 55(2), 91–106 (2013)

    Article  ADS  Google Scholar 

  50. K.L. Yan, R.H. Fan, Z.C. Shi, M. Chen, L. Qian, Y.L. Wei, K. Sun, J. Li, Negative permittivity behavior and magnetic performance of perovskite La1−x Sr x MnO3 at high-frequency. J. Mater. Chem. C 2, 1028 (2014)

    Article  Google Scholar 

  51. G.E.M. Jauncey, F. Pennell, Scattering of X-rays from powdered crystals. Phys. Rev. B 43, 505 (1933)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Bahari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholipur, R., Bahari, A. Magnetic and electric responses from artificial nanocomposites. Appl. Phys. A 122, 536 (2016). https://doi.org/10.1007/s00339-016-0066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0066-z

Keywords

Navigation