Skip to main content
Log in

Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel scanning near-field thermoelectric microscopy (STeM) was proposed and developed for characterizing subsurface, nanoscale Seebeck coefficient of thermoelectric energy materials. In STeM, near-field evanescent thermal wave was induced around the thermal probe’s contact with the thermoelectric sample’s surface via a periodically modulated heated thermal probe, giving rise to a thermoelectric near-field interaction with simultaneous excitation of three harmonic signals for local Seebeck coefficient derivation. The near-field STeM was capable of characterizing local Seebeck coefficient of thermoelectric materials with high lateral resolution at nanometer scale and more importantly provides a convenient, powerful tool for quantitative characterization of subsurface nanoscale thermoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. W.S. Liu, X. Yan, G. Chen, Z.F. Ren, Nano Energy 1, 42 (2012)

    Article  Google Scholar 

  2. K. Nielsch, J. Bachmann, J. Kimling, H. Böttner, Adv. Energy Mater. 1, 713 (2011)

    Article  Google Scholar 

  3. H.K. Lyeo, A.A. Khajetoorians, L. Shi, K.P. Pipe, R.J. Ram, A. Shakouri, C.K. Shih, Science 303, 816 (2004)

    Article  ADS  Google Scholar 

  4. L. Shi, S. Plyasunov, A. Bachtold, P.L. McEuen, A. Majumdar, Appl. Phys. Lett. 77, 4295 (2000)

    Article  ADS  Google Scholar 

  5. K.L. Grosse, M.H. Bae, F.F. Lian, E. Pop, W.P. King, Nat. Nanotechnol. 6, 287 (2011)

    Article  ADS  Google Scholar 

  6. Y.L. Zhang, C.L. Hapenciuc, E.E. Castillo, T.B. Tasciuc, R.J. Mehta, C. Karthik, G. Ramanath, Appl. Phys. Lett. 96, 062107 (2010)

    Article  ADS  Google Scholar 

  7. L.J. Balk, R. Heiderhoff, J.C.H. Phang, Ch. Thomas, Appl. Phys. A 87, 443 (2007)

    Article  ADS  Google Scholar 

  8. A. Tselev, N.V. Lavrik, A. Kolmakov, S.V. Kalinin, Adv. Funct. Mater. 23, 2635 (2013)

    Article  Google Scholar 

  9. D. Credgington, O. Fenwick, A. Charas, J. Morgado, K. Suhling, F. Cacialli, Adv. Funct. Mater. 20, 2842 (2010)

    Article  Google Scholar 

  10. A. Altes, R. Heiderhoff, L.J. Balk, J. Phys. D Appl. Phys. 37, 952 (2004)

    Article  ADS  Google Scholar 

  11. D.G. Cahill, Rev. Sci. Instrum. 61, 802 (1990)

    Article  ADS  Google Scholar 

  12. A. Hammiche, C. Hodges, V. Mathot, P. Willcocks, Thermochim. Acta 385, 19 (2005)

    Google Scholar 

  13. W.L. Mi, P.F. Qiu, T.S. Zhang, Y.H. Lv, X. Shi, L.D. Chen, Appl. Phys. Lett. 104, 133903 (2014)

    Article  ADS  Google Scholar 

  14. C.R. Pichard, C.R. Tellier, A.J. Tosser, J. Phys. F Metal Phys. 10, 2009 (1980)

    Article  ADS  Google Scholar 

  15. I.H. Kim, Mater. Lett. 44, 75 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Basic Research Program of China under Grant Nos. 2012CB933004 and 2015CB654605, the National Natural Science Foundation of China under Grant No. 51402328, and the Key Research Program of Chinese Academy of Sciences (Grant No. KGZD-EW-T06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. R. Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K.Q., Zeng, H.R., Zhao, K.Y. et al. Scanning near-field thermoelectric microscopy for subsurface nanoscale thermoelectric behavior. Appl. Phys. A 122, 521 (2016). https://doi.org/10.1007/s00339-016-0050-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0050-7

Keywords

Navigation