Skip to main content
Log in

Improved wetting behavior and thermal conductivity of the three-dimensional nickel foam/epoxy composites with graphene oxide as interfacial modifier

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The partial reduced graphene oxide (P-rGO) sheets-wrapped nickel foams (NF@P-rGO) were prepared by hydrothermal method, and then their epoxy composites were fabricated via a simple drop-wetting process. The P-rGO sheets on the metal networks could effectively improve the compatibility between nickel foam and epoxy resin, thus greatly accelerate the wetting of epoxy resin on the foams and avoid cracks in the network–polymer interface. Owing to the existence of high-efficiency conductive metal networks, the NF@P-rGO/epoxy composite has a high thermal conductivity of 0.584 W m−1 K−1, which is 2.6 times higher than that of neat epoxy resin. Additionally, owing to the improved wetting ability, NF@P-rGO-10 wt% boron nitride (BN) microsheets/epoxy composites could be fabricated and have a further higher thermal conductivity of 0.71 W m−1 K−1. We believe the use of P-rGO as a novel surface modifier and the following liquid polymer drop-wetting could be an effective method to obtain novel and outstanding metal foam/polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.H. Yu, X.Y. Huang, C. Wu, X.F. Wu, G.L. Wang, P.K. Jiang, Polymer 53, 471 (2012)

    Article  Google Scholar 

  2. L. Huang, P.L. Zhu, G. Li, D.Q. Lu, R. Sun, C.P. Wong, J. Mater. Chem. A 2, 18246 (2014)

    Article  Google Scholar 

  3. H.T. Chiu, T. Sukachonmakul, M.T. Kuo, Y.H. Wang, K. Wattanakul, Appl. Surf. Sci. 292, 928 (2014)

    Article  ADS  Google Scholar 

  4. W.Q. Jin, W. Zhang, Y.W. Gao, G.Z. Liang, A.J. Gu, L. Yuan, Appl. Surf. Sci. 270, 561 (2013)

    Article  ADS  Google Scholar 

  5. X.Y. Huang, C.Y. Zhi, P.K. Jiang, D. Golberg, Y. Bando, T. Tanaka, Adv. Funct. Mater. 23, 1824 (2013)

    Article  Google Scholar 

  6. C. Min, D.M. Yu, J.Y. Cao, G.L. Wang, L.H. Feng, Carbon 55, 116 (2013)

    Article  Google Scholar 

  7. S.Y. Yang, C.C.M. Ma, C.C. Teng, Y.W. Huang, S.H. Liao, Y.L. Huang, H.W. Tien, T.M. Lee, K.C. Chiou, Carbon 48, 592 (2010)

    Article  Google Scholar 

  8. K. Pashayi, H.R. Fard, F.Y. Lai, S. Iruvanti, J. Plawsky, T. Borca-Tasciuc, J. Appl. Phys. 111, 104310 (2012)

    Article  ADS  Google Scholar 

  9. I. Krupa, V. Cecen, A. Boudenne, J. Prokes, I. Novak, Mater. Des. 51, 620 (2013)

    Article  Google Scholar 

  10. S.L. Wang, Y. Cheng, R.R. Wang, J. Sun, L. Gao, A.C.S. Appl, Mater. Interfaces 6, 6481 (2014)

    Article  Google Scholar 

  11. S.L. Yan, J. Ren, Mater. Des 39, 425 (2012)

    Article  Google Scholar 

  12. X. Xiao, P. Zhang, M. Li, Appl. Energy 112, 1357 (2013)

    Article  Google Scholar 

  13. Y.B. Zeng, Y. Zhou, L. Kong, T.S. Zhou, G.Y. Shi, Biosens. Bioelectron. 45, 25 (2013)

    Article  Google Scholar 

  14. B.Y. Chen, N. Ma, X. Bai, H.M. Zhang, Y. Zhang, RSC Adv. 2, 4683 (2012)

    Article  Google Scholar 

  15. H. Im, J. Kim, Carbon 50, 5429 (2012)

    Article  Google Scholar 

  16. Y.J. Wan, L.C. Tang, L.X. Gong, D. Yan, Y.B. Li, L.B. Wu, J.X. Jiang, G.Q. Lai, Carbon 69, 467 (2014)

    Article  Google Scholar 

  17. L. Chen, S.G. Chai, K. Liu, N.Y. Ning, J. Gao, Q.F. Liu, F. Chen, Q. Fu, A.C.S. Appl, Mater. Interfaces 4, 4398 (2012)

    Article  Google Scholar 

  18. X.Q. Zhang, X.Y. Fan, C. Yan, H.Z. Li, Y.D. Zhu, X.T. Li, L.P. Yu, A.C.S. Appl, Mater. Interfaces 4, 1543 (2012)

    Article  Google Scholar 

  19. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  20. H.Y. Wang, G.M. Wang, Y.C. Ling, F. Qian, Y. Song, X.H. Lu, S.W. Chen, Y.X. Tong, Y. Li, Nanoscale 5, 10283 (2013)

    Article  ADS  Google Scholar 

  21. N. Wu, X.L. She, D.J. Yang, X.F. Wu, F.B. Su, Y.F. Chen, J. Mater. Chem. 22, 17254 (2012)

    Article  Google Scholar 

  22. M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, Y.J. Chabal, Nat. Mater. 9, 840 (2010)

    Article  ADS  Google Scholar 

  23. P. Ding, S.S. Su, N. Song, S.F. Tang, Y.M. Liu, L.Y. Shi, Carbon 66, 576 (2014)

    Article  Google Scholar 

  24. X.G. Mei, J.Y. Ouyang, Carbon 49, 5389 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Basic Research Program of China (973 Program) (2015CB057206), Guangdong Innovative Research Team Program (No. 2011D052 and KYPT20121228160843692), Shenzhen High Density Electronic Packaging and Device Assembly Key Laboratory (ZDSYS20140509174237196), Shenzhen Basic Research Plan (JSGG20150512145714246 and JCYJ20140610152828685).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengli Zhu or Rong Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, L., Zhu, P., Li, G. et al. Improved wetting behavior and thermal conductivity of the three-dimensional nickel foam/epoxy composites with graphene oxide as interfacial modifier. Appl. Phys. A 122, 515 (2016). https://doi.org/10.1007/s00339-016-0048-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0048-1

Keywords

Navigation