Skip to main content
Log in

Studying the influence of surface effects on vibration behavior of size-dependent cracked FG Timoshenko nanobeam considering nonlocal elasticity and elastic foundation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Free transverse vibration of a size-dependent cracked functionally graded (FG) Timoshenko nanobeam resting on a polymer elastic foundation is investigated in the present study. Also, all of the surface effects: surface density, surface elasticity and residual surface tension are studied. Moreover, satisfying the balance condition between the nanobeam and its surfaces was discussed. According to the power-law distribution, it is supposed that the material properties of the FG nanobeam are varying continuously across the thickness. Considering the small-scale effect, the Eringen’s nonlocal theory is used; accounting the effect of polymer elastic foundation, the Winkler model is proposed. For this purpose, the equations of motion of the FG Timoshenko nanobeam and boundary conditions are obtained using Hamilton’s principle. To find the analytical solutions for equations of motion of the FG nanobeam, the separation of variables method is employed. Two cases of boundary conditions, i.e., simply supported–simply supported (SS) and clamped–clamped (CC) are investigated in the present work. Numerical results are demonstrating a good agreement between the results of the present study and some available cases in the literature. The emphasis of the present study is on investigating the effect of various parameters such as crack severity, crack position, gradient index, mode number, nonlocal parameter, elastic foundation parameter and nanobeam length. It is clearly revealed that the vibrational behavior of a FG nanobeam is depending significantly on these effects. Also, these numerical results can be serving as benchmarks for future studies of FG nanobeams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. B.S. Shariat, Y. Liu, G. Rio, Modelling and experimental investigation of geometrically graded NiTi shape memory alloys. Smart Mater. Struct. 22, 025030 (2013)

    Article  ADS  Google Scholar 

  2. M. Rahaeifard, M. Kahrobaiyan, M. Ahmadian, Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials, in ASME international design engineering technical conferences and computers and information in engineering conference, (2009). pp. 539–544

  3. X. Jia, J. Yang, S. Kitipornchai, C. Lim, Free vibration of geometrically nonlinear micro-switches under electrostatic and Casimir forces. Smart Mater. Struct. 19, 115028 (2010)

    Article  ADS  Google Scholar 

  4. X.L. Jia, J. Yang, S. Kitipornchai, C.W. Lim, Forced vibration of electrically actuated FGM micro-switches. Proced. Eng. 14, 280–287 (2011)

    Article  Google Scholar 

  5. R.C. Carbonari, E.C. Silva, G.H. Paulino, Multi-actuated functionally graded piezoelectric micro-tools design: a multiphysics topology optimization approach. Int. J. Numer. Methods Eng. 77, 301–336 (2009)

    Article  MATH  Google Scholar 

  6. Z. Lee, C. Ophus, L. Fischer, N. Nelson-Fitzpatrick, K. Westra, S. Evoy, Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology 17, 3063 (2006)

    Article  Google Scholar 

  7. R. Batra, M. Porfiri, D. Spinello, Vibrations of narrow microbeams predeformed by an electric field. J. Sound Vib. 309, 600–612 (2008)

    Article  ADS  Google Scholar 

  8. B. Mohammadi-Alasti, G. Rezazadeh, A.M. Borgheei, S. Minaei, R. Habibifar, On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure. Compos. Struct. 93, 1516–1525 (2011)

    Article  Google Scholar 

  9. A. Chong, F. Yang, D. Lam, P. Tong, Torsion and bending of micron-scaled structures. J. Mater. Res. 16, 1052–1058 (2001)

    Article  ADS  Google Scholar 

  10. N. Fleck, G. Muller, M. Ashby, J. Hutchinson, Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  11. Q. Ma, D.R. Clarke, Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  ADS  Google Scholar 

  12. A.C. Eringen, Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. A.C. Eringen, D. Edelen, On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  14. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  ADS  Google Scholar 

  15. A.C. Eringen, Nonlocal Continuum Field Theories (Springer, Berlin, 2002)

    MATH  Google Scholar 

  16. J. Reddy, Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288–307 (2007)

    Article  MATH  Google Scholar 

  17. J. Reddy, Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48, 1507–1518 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Wang, H. Hu, Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71, 195412–195419 (2005)

    Article  ADS  Google Scholar 

  19. Q. Wang, Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301–124306 (2005)

    Article  ADS  Google Scholar 

  20. M. Bedroud, S. Hosseini-Hashemi, R. Nazemnezhad, Buckling of circular/annular Mindlin nanoplates via nonlocal elasticity. Acta Mech. 224, 2663–2676 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Bedroud, S. Hosseini-Hashemi, R. Nazemnezhad, Axisymmetric/asymmetric buckling of circular/annular nanoplates via nonlocal elasticity. Modares Mech. Eng. 13, 144–152 (2013)

    MATH  Google Scholar 

  22. S. Hosseini-Hashemi, M. Bedroud, R. Nazemnezhad, An exact analytical solution for free vibration of functionally graded circular/annular Mindlin nanoplates via nonlocal elasticity. Compos. Struct. 103, 108–118 (2013)

    Article  MATH  Google Scholar 

  23. S. Hosseini-Hashemi, M. Zare, R. Nazemnezhad, An exact analytical approach for free vibration of Mindlin rectangular nano-plates via nonlocal elasticity. Compos. Struct. 100, 290–299 (2013)

    Article  Google Scholar 

  24. X.W. Lei, T. Natsuki, J.X. Shi, Q.Q. Ni, Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal timoshenko beam model. Compos. B Eng. 43, 64–69 (2012)

    Article  Google Scholar 

  25. H.L. Lee, W.J. Chang, Surface and small-scale effects on vibration analysis of a nonuniform nanocantilever beam. Phys. E 43, 466–469 (2010)

    Article  Google Scholar 

  26. B. Gheshlaghi, S.M. Hasheminejad, Vibration analysis of piezoelectric nanowires with surface and small scale effects. Curr. Appl. Phys. 12, 1096–1099 (2012)

    Article  ADS  Google Scholar 

  27. K. Wang, B. Wang, The electromechanical coupling behavior of piezoelectric nanowires: surface and small-scale effects. Europhys. Lett. 97, 66005 (2012)

    Article  ADS  Google Scholar 

  28. K. Wang, B. Wang, Vibration of nanoscale plates with surface energy via nonlocal elasticity. Phys. E 44, 448–453 (2011)

    Article  Google Scholar 

  29. H.L. Lee, W.J. Chang, Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. J. Appl. Phys. 108, 093503 (2010)

    Article  ADS  Google Scholar 

  30. C. Juntarasaid, T. Pulngern, S. Chucheepsakul, Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity. Phys. E 46, 68–76 (2012)

    Article  Google Scholar 

  31. F. Mahmoud, M. Eltaher, A. Alshorbagy, E. Meletis, Static analysis of nanobeams including surface effects by nonlocal finite element. J. Mech. Sci. Technol. 26, 3555–3563 (2012)

    Article  Google Scholar 

  32. L. He, C. Lim, B. Wu, A continuum model for size-dependent deformation of elastic films of nano-scale thickness. Solids Struct. 41, 847–857 (2004)

    Article  MATH  Google Scholar 

  33. M. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Gurtin, J. Weissmuller, F. Larche, A general theory of curved deformable interfaces in solids at equilibrium. Philos. Mag. A 78, 1093–1109 (1998)

    Article  ADS  Google Scholar 

  35. P. Asgharifard Sharabiani, M.R. Haeri Yazdi, Nonlinear free vibrations of functionally graded nanobeams with surface effects. Compos. B Eng. 45, 581–586 (2013)

    Article  Google Scholar 

  36. S. Hosseini-Hashemi, R. Nazemnezhad, An analytical study on the nonlinear free vibration of functionally graded nanobeams incorporating surface effects. Compos. B Eng. 52, 199–206 (2013)

    Article  Google Scholar 

  37. R. Nazemnezhad, M. Salimi, S. Hosseini-Hashemi, P.A. Sharabiani, An analytical study on the nonlinear free vibration of nanoscale beams incorporating surface density effects. Compos. B Eng. 43, 2893–2897 (2012)

    Article  Google Scholar 

  38. F. Song, G. Huang, H. Park, X. Liu, A continuum model for the mechanical behavior of nanowires including surface and surface-induced initial stresses. Int. J. Solids Struct. 48, 2154–2163 (2011)

    Article  Google Scholar 

  39. C. Liu, R. Rajapakse, Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. Nanotechnology 9, 422–431 (2010)

    Google Scholar 

  40. P. Malekzadeh, M. Shojaee, Surface and nonlocal effects on the nonlinear free vibration of non-uniform nanobeams. Compos. B Eng. 52, 82–94 (2013)

    Article  Google Scholar 

  41. M. Ece, M. Aydogdu, Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech. 190, 185–195 (2007)

    Article  MATH  Google Scholar 

  42. S. Abbasion, A. Rafsanjani, R. Avazmohammadi, A. Farshidianfar, Free vibration of microscaled Timoshenko beams. Appl. Phys. Lett. 95, 143122 (2009)

    Article  ADS  Google Scholar 

  43. G.F. Wang, X.Q. Feng, Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl. Phys. Lett. 90, 231904 (2007)

    Article  ADS  Google Scholar 

  44. D.H. Wang, G.F. Wang, Surface effects on the vibration and buckling of double-nanobeam-systems. J. Nanomater. 2011, 12 (2011)

    Google Scholar 

  45. Z. Yan, L. Jiang, The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects. Nanotechnology 22, 245703 (2011)

    Article  ADS  Google Scholar 

  46. M. Ghadiri, N. Shafiei, H. Safarpour, Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity. Microsyst. Technol. (2016). doi:10.1007/s00542-016-2822-6

    Google Scholar 

  47. F. Ebrahimi, M. Ghadiri, E. Salari, S.A.H. Hoseini, G.R. Shaghaghi, Application of the differential transformation method for nonlocal vibration analysis of functionally graded nanobeams. J. Mech. Sci. Technol. 29(3), 1207–1215 (2015)

    Article  Google Scholar 

  48. O. Rahmani, A.A. Jandaghian, Buckling analysis of functionally graded nanobeams based on a nonlocal third-order shear deformation theory. Appl. Phys. A (2015). doi:10.1007/s00339-015-9061-z

    Google Scholar 

  49. M.A. Eltaher, S.A. Emam, F.F. Mahmoud, Static and stability analysis of nonlocal functionally graded nanobeams. Compos. Struct. 96, 82–88 (2013)

    Article  Google Scholar 

  50. O. Rahmani, O. Pedram, Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory. Int. J. Eng. Sci. 77, 55–70 (2014)

    Article  MathSciNet  Google Scholar 

  51. R. Nazemnezhad, S. Hosseini-Hashemi, Nonlocal nonlinear free vibration of functionally graded nanobeams. Compos. Struct. 110, 192–199 (2014)

    Article  MATH  Google Scholar 

  52. F. Ebrahimi, E. Salari, Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method. Compos. B (2015). doi:10.1016/j.compositesb.2015.04.010

    Google Scholar 

  53. R. Ansari, T. Pourashraf, R. Gholami, An exact solution for the nonlinear forced vibration of functionally graded nanobeams in thermal environment based on surface elasticity theory. Thin-Walled Struct. 93, 169–176 (2015)

    Article  Google Scholar 

  54. A. Luque, J. Aldazabal, J. Martinez-Esnaola, J. Sevillano, Atomistic simulation of tensile strength and toughness of cracked Cu nanowires. Fatigue Fract. Eng. Mater. Struct. 29, 615–622 (2006)

    Article  Google Scholar 

  55. J. Loya, J. Lopez-Puente, R. Zaera, J. Fernandez-Saez, Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model. J. Appl. Phys. 105, 044309-9 (2009)

    Article  ADS  Google Scholar 

  56. K. Torabi, J.N. Dastgerdi, An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model. Thin Solid Films 520, 6595–6602 (2012)

    Article  ADS  Google Scholar 

  57. J.C. Hsu, H.L. Lee, W.J. Chang, Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory. Curr. Appl. Phys. 11, 1384–1388 (2011)

    Article  ADS  Google Scholar 

  58. S.M. Hasheminejad, B. Gheshlaghi, Y. Mirzaei, S. Abbasion, Free transverse vibrations of cracked nanobeams with surface effects. Thin Solid Films 519, 2477–2482 (2011)

    Article  ADS  Google Scholar 

  59. H. Roostai, M. Haghpanahi, Vibration of nanobeams of different boundary conditions with multiple cracks based on nonlocal elasticity theory. J. Appl. Math. Model. 38, 1159–1169 (2014)

    Article  MathSciNet  Google Scholar 

  60. S. Hosseini-Hashemi, M. Fakher, R. Nazemnezhad, M.H. Sotoude Haghighi, Dynamic behavior of thin and thick cracked nanobeams incorporating surface effects. J Compos. B 61, 66–72 (2014)

    Article  Google Scholar 

  61. K. Wang, B. Wang, Timoshenko beam model for the vibration analysis of a cracked nanobeam with surface energy. J. Vib. Control 21, 2452–2464 (2015)

    Article  MathSciNet  Google Scholar 

  62. D. Karlicic, D. Jovanovic, P. Kozic, M. Cajic, Thermal and magnetic effects on the vibration of a cracked nanobeam embedded in an elastic medium. J. Mech. Mater. Struct. 10, 43–62 (2015)

    Article  Google Scholar 

  63. Y. Tadi Beni, A. Jafaria, H. Razavi, Size effect on free transverse vibration of cracked nano-beams using couple stress theory. Int. J. Eng. Trans. B 28, 296–304 (2015)

    Google Scholar 

  64. M.E. Gurtin, A. Ian Murdoch, Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    Article  MATH  Google Scholar 

  65. P. Lu, L. He, H. Lee, C. Lu, Thin plate theory including surface effects. Int. J. Solids Struct. 43, 4631–4647 (2006)

    Article  MATH  Google Scholar 

  66. C. Lu, C. Lim, W. Chen, Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int. J. Solids Struct. 46, 1176–1185 (2009)

    Article  MATH  Google Scholar 

  67. M. Simsek, H.H. Yurtcu, Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos. Struct. 97, 378–386 (2013)

    Article  Google Scholar 

  68. R.E. Miller, V.B. Shenoy, Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  ADS  Google Scholar 

  69. S. Ogata, J. Li, S. Yip, Ideal pure shear strength of aluminum and copper. Science 298, 807–811 (2002)

    Article  ADS  Google Scholar 

  70. R. Zhu, E. Pan, X. Chung, P.W. Cai, K.M. Liew, A. Buldum, Atomistic calculation of elastic moduli in strained silicon. Semicond. Sci. Technol. 21, 906–911 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghadiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadiri, M., Soltanpour, M., Yazdi, A. et al. Studying the influence of surface effects on vibration behavior of size-dependent cracked FG Timoshenko nanobeam considering nonlocal elasticity and elastic foundation. Appl. Phys. A 122, 520 (2016). https://doi.org/10.1007/s00339-016-0036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0036-5

Keywords

Navigation