Propagation of electromagnetic waves through a multilayered structure containing diamond-like carbon, porous silicon, and left-handed material

Abstract

In this work, reflection and transmission of electromagnetic wave through a multilayered structure containing diamond-like carbon, porous silicon, and left-handed material (LHM) are investigated theoretically and numerically. The mentioned materials are described, and their main parameters are given in detail. After the construction of the problem, the reflection and transmission coefficients are derived in a closed form by a transfer matrix method. The reflected and transmitted powers of the structure are calculated using these coefficients. In the numerical results, the mentioned powers are computed and illustrated as a function of frequency, angle of incidence, and slabs thickness, when the damping coefficient of the LHM changes. The results obtained may be useful to the researchers and designer working in the area solar cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Phys. Uspekhi 10, 509–514 (1986)

    ADS  Article  Google Scholar 

  2. 2.

    J.B. Pendry, A.J. Holden, W.J. Sewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructure. Phys. Rev. Lett. 76, 4773–4776 (1996)

    ADS  Article  Google Scholar 

  3. 3.

    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetic from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    ADS  Article  Google Scholar 

  4. 4.

    M.F. Ubeid, M.M. Shabat, M.O. Sid-Ahmed, Effect of negative permittivity and permeability on the transmission of electromagnetic waves through a structure containing left-handed material. Nat. Sci. 3(4), 328–333 (2011)

    Google Scholar 

  5. 5.

    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    T. Tang, A broad flat-top adjustable filter with metamaterial. IEEE Photonic Technol. Lett. 24(4), 288–290 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    M. Masuko, T. Ono, S. Aoki, A. Suzuki, H. Ito, Friction and wear characteristics of DLC coating with different hydrogen content lubricated with several Mo-containing compounds and their related compounds. Tribol. Int. 82, 350–357 (2015)

    Article  Google Scholar 

  8. 8.

    R. Sharma, P.K. Barhai, N. Kumari, Corrosion resistant behavior of DLC films. Thin Solids Films 516(16), 5397–5403 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    J. Vetter, Surface and coatings technology 60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 257, 213–240 (2014)

    Article  Google Scholar 

  10. 10.

    R. Hatada, S. Flege, A. Bbrich, W. Ensinger, K. Baba, Surface modification and corrosion properties of implanted and DLC coated stainless steel by plasma based implantation and deposition. Surf. Coat. Technol. 256, 23–29 (2013)

    Article  Google Scholar 

  11. 11.

    M. Kalin, J. Kogovesk, M. Remskar, Nanoparticles as novel lubricating additive in a green, physically based lubrication technology for DLC coating. Wear 303, 480–485 (2013)

    Article  Google Scholar 

  12. 12.

    Z. Seker, H. Ozdamar, M. Esen, R. Esen, H. Kavak, The effect of nitrogen incorporation in DLC films deposited by ECR Microwave plasma CVD. Appl. Surf. Sci. 314, 46–51 (2014)

    ADS  Article  Google Scholar 

  13. 13.

    W. Yang, Y. Guo, D. Xu, J. Li, P. Ke, A. Wang, Microstructure and properties of (Cr:N)-DLC films deposited by a hybrid beam technique. Surf. Coat. Technol. 261, 398–403 (2015)

    Article  Google Scholar 

  14. 14.

    P. Vitano, E. Goranova, V. Stavrov, P.K. Singh, Fabrication of buried contact silicon solar cells using porous silicon. Sol. Energy Mater. Sol. Cells 93(3), 293–300 (2009)

    Google Scholar 

  15. 15.

    Z.N. Adamian, A.P. Hakhoyan, V.M. Aroutiounian, R.S. Barseghian, K. Touryan, Investigation of solar cells with porous silicon as antireflection layer. Sol. Energy Mater. Sol. Cells 64, 347–351 (2000)

    Article  Google Scholar 

  16. 16.

    P. Vianov, M. Delibasheva, E. Goranova, M. Peneva, Influence of porous silicon coating on silicon solar cells with different emitter thicknesses. Sol. Energy Mater. Sol. Cells 61(3), 213–221 (2000)

    Article  Google Scholar 

  17. 17.

    W.J. Aziz, A. Ramizy, K. Ibrahim, Z. Hassan, K. Omar, The effect of antireflection coating of porous silicon on solar cells efficiency, OPTIK. Int. J. Light Electron Opt. 122(16), 1462–1465 (2011)

    Article  Google Scholar 

  18. 18.

    S. Aouida, M. Saadoun, M.F. Boujmil, M.B. Rabha, B. Bessaϊs, Effect of UV irradiations on the structural and optical features of porous silicon: application in silicon solar cells. Appl. Surf. Sci. 238, 193–198 (2004)

    ADS  Article  Google Scholar 

  19. 19.

    R.J. Mart, Morphological, optical and electrical characterization of antireflective porous silicon coatings for solar cells. Sol. Energy Mater. Sol. Cells 17, 4–7 (2001)

    Google Scholar 

  20. 20.

    C.S. Solanki, R.R. Bilyalov, J. Poortmans, J. Nijs, R. Mertens, Porous silicon layer transfer processes for solar cells. Sol. Energy Mater. Solar Cells 83(1), 101–113 (2004)

    Article  Google Scholar 

  21. 21.

    H.A. Macleod, Thin Film Optical Filters, 3rd edn. (Institute of Physics, London, 2001)

    Google Scholar 

  22. 22.

    Z. Zhang, Z. Wang, L. Wang, Design principle of single-or double-layer wave-absorbers containing left-handed materials. Mater. Des. 30, 3908–3912 (2009)

    Article  Google Scholar 

  23. 23.

    M.F. Ubeid, M.M. Shabat, Reflected and transmitted powers of electromagnetic waves through a ferrite-dielectric photonic crystal. Int. Lett. Chem. Phys. Astron. 14(1), 86–98 (2014)

    Article  Google Scholar 

  24. 24.

    M.F. Ubeid, M.M. Shabat, M.O. Sid-Ahmed, Numerical study of a structure containing left-handed material waveguide. Indian J. Phys. 86(2), 125–128 (2012). (Springer)

    ADS  Article  Google Scholar 

  25. 25.

    D.D. Stancil, A. Prabhakar, Spin Waves (Springer Sience, New York, 2009)

    Google Scholar 

  26. 26.

    C. Sabah, S. Uckun, Electromagnetic wave propagation through frequency-dispersive and lossy double-negative slab. Opto Electron. Rev. 15, 133–143 (2007)

    ADS  Article  Google Scholar 

  27. 27.

    R.K. Wangsness, Electromagnetic Fields, 2nd edn. (Wiley, New York, 1986)

    Google Scholar 

  28. 28.

    J.R. Reitz, F.J. Milford, W. Christy, Foundations of Electromagnetic Theory, 4th edn. (Addison-Wesley, Menlo Park, 1993)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muin F. Ubeid.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shabat, M.M., Ubeid, M.F. & Altanany, S.M. Propagation of electromagnetic waves through a multilayered structure containing diamond-like carbon, porous silicon, and left-handed material. Appl. Phys. A 122, 503 (2016). https://doi.org/10.1007/s00339-016-0031-x

Download citation

Keywords

  • Solar Cell
  • Porous Silicon
  • Characteristic Matrix
  • Transfer Matrix Method
  • Slab Thickness