Applied Physics A

, 122:503 | Cite as

Propagation of electromagnetic waves through a multilayered structure containing diamond-like carbon, porous silicon, and left-handed material

  • Mohammed M. Shabat
  • Muin F. UbeidEmail author
  • Sameh M. Altanany


In this work, reflection and transmission of electromagnetic wave through a multilayered structure containing diamond-like carbon, porous silicon, and left-handed material (LHM) are investigated theoretically and numerically. The mentioned materials are described, and their main parameters are given in detail. After the construction of the problem, the reflection and transmission coefficients are derived in a closed form by a transfer matrix method. The reflected and transmitted powers of the structure are calculated using these coefficients. In the numerical results, the mentioned powers are computed and illustrated as a function of frequency, angle of incidence, and slabs thickness, when the damping coefficient of the LHM changes. The results obtained may be useful to the researchers and designer working in the area solar cells.


Solar Cell Porous Silicon Characteristic Matrix Transfer Matrix Method Slab Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Phys. Uspekhi 10, 509–514 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    J.B. Pendry, A.J. Holden, W.J. Sewart, I. Youngs, Extremely low frequency plasmons in metallic mesostructure. Phys. Rev. Lett. 76, 4773–4776 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, Magnetic from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    M.F. Ubeid, M.M. Shabat, M.O. Sid-Ahmed, Effect of negative permittivity and permeability on the transmission of electromagnetic waves through a structure containing left-handed material. Nat. Sci. 3(4), 328–333 (2011)Google Scholar
  5. 5.
    J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    T. Tang, A broad flat-top adjustable filter with metamaterial. IEEE Photonic Technol. Lett. 24(4), 288–290 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    M. Masuko, T. Ono, S. Aoki, A. Suzuki, H. Ito, Friction and wear characteristics of DLC coating with different hydrogen content lubricated with several Mo-containing compounds and their related compounds. Tribol. Int. 82, 350–357 (2015)CrossRefGoogle Scholar
  8. 8.
    R. Sharma, P.K. Barhai, N. Kumari, Corrosion resistant behavior of DLC films. Thin Solids Films 516(16), 5397–5403 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    J. Vetter, Surface and coatings technology 60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 257, 213–240 (2014)CrossRefGoogle Scholar
  10. 10.
    R. Hatada, S. Flege, A. Bbrich, W. Ensinger, K. Baba, Surface modification and corrosion properties of implanted and DLC coated stainless steel by plasma based implantation and deposition. Surf. Coat. Technol. 256, 23–29 (2013)CrossRefGoogle Scholar
  11. 11.
    M. Kalin, J. Kogovesk, M. Remskar, Nanoparticles as novel lubricating additive in a green, physically based lubrication technology for DLC coating. Wear 303, 480–485 (2013)CrossRefGoogle Scholar
  12. 12.
    Z. Seker, H. Ozdamar, M. Esen, R. Esen, H. Kavak, The effect of nitrogen incorporation in DLC films deposited by ECR Microwave plasma CVD. Appl. Surf. Sci. 314, 46–51 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    W. Yang, Y. Guo, D. Xu, J. Li, P. Ke, A. Wang, Microstructure and properties of (Cr:N)-DLC films deposited by a hybrid beam technique. Surf. Coat. Technol. 261, 398–403 (2015)CrossRefGoogle Scholar
  14. 14.
    P. Vitano, E. Goranova, V. Stavrov, P.K. Singh, Fabrication of buried contact silicon solar cells using porous silicon. Sol. Energy Mater. Sol. Cells 93(3), 293–300 (2009)Google Scholar
  15. 15.
    Z.N. Adamian, A.P. Hakhoyan, V.M. Aroutiounian, R.S. Barseghian, K. Touryan, Investigation of solar cells with porous silicon as antireflection layer. Sol. Energy Mater. Sol. Cells 64, 347–351 (2000)CrossRefGoogle Scholar
  16. 16.
    P. Vianov, M. Delibasheva, E. Goranova, M. Peneva, Influence of porous silicon coating on silicon solar cells with different emitter thicknesses. Sol. Energy Mater. Sol. Cells 61(3), 213–221 (2000)CrossRefGoogle Scholar
  17. 17.
    W.J. Aziz, A. Ramizy, K. Ibrahim, Z. Hassan, K. Omar, The effect of antireflection coating of porous silicon on solar cells efficiency, OPTIK. Int. J. Light Electron Opt. 122(16), 1462–1465 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Aouida, M. Saadoun, M.F. Boujmil, M.B. Rabha, B. Bessaϊs, Effect of UV irradiations on the structural and optical features of porous silicon: application in silicon solar cells. Appl. Surf. Sci. 238, 193–198 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    R.J. Mart, Morphological, optical and electrical characterization of antireflective porous silicon coatings for solar cells. Sol. Energy Mater. Sol. Cells 17, 4–7 (2001)Google Scholar
  20. 20.
    C.S. Solanki, R.R. Bilyalov, J. Poortmans, J. Nijs, R. Mertens, Porous silicon layer transfer processes for solar cells. Sol. Energy Mater. Solar Cells 83(1), 101–113 (2004)CrossRefGoogle Scholar
  21. 21.
    H.A. Macleod, Thin Film Optical Filters, 3rd edn. (Institute of Physics, London, 2001)CrossRefGoogle Scholar
  22. 22.
    Z. Zhang, Z. Wang, L. Wang, Design principle of single-or double-layer wave-absorbers containing left-handed materials. Mater. Des. 30, 3908–3912 (2009)CrossRefGoogle Scholar
  23. 23.
    M.F. Ubeid, M.M. Shabat, Reflected and transmitted powers of electromagnetic waves through a ferrite-dielectric photonic crystal. Int. Lett. Chem. Phys. Astron. 14(1), 86–98 (2014)CrossRefGoogle Scholar
  24. 24.
    M.F. Ubeid, M.M. Shabat, M.O. Sid-Ahmed, Numerical study of a structure containing left-handed material waveguide. Indian J. Phys. 86(2), 125–128 (2012). (Springer) ADSCrossRefGoogle Scholar
  25. 25.
    D.D. Stancil, A. Prabhakar, Spin Waves (Springer Sience, New York, 2009)zbMATHGoogle Scholar
  26. 26.
    C. Sabah, S. Uckun, Electromagnetic wave propagation through frequency-dispersive and lossy double-negative slab. Opto Electron. Rev. 15, 133–143 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    R.K. Wangsness, Electromagnetic Fields, 2nd edn. (Wiley, New York, 1986)Google Scholar
  28. 28.
    J.R. Reitz, F.J. Milford, W. Christy, Foundations of Electromagnetic Theory, 4th edn. (Addison-Wesley, Menlo Park, 1993)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mohammed M. Shabat
    • 1
  • Muin F. Ubeid
    • 1
    Email author
  • Sameh M. Altanany
    • 1
  1. 1.Department of Physics, Faculty of ScienceIslamic University of GazaGazaPalestinian Authority

Personalised recommendations