Advertisement

Applied Physics A

, 122:498 | Cite as

Thermal kinetic and dielectric parameters of acenaphthene crystal grown by vertical Bridgman technique

  • S. Karuppusamy
  • K. Dinesh Babu
  • V. Nirmal Kumar
  • R. GopalakrishnanEmail author
Article

Abstract

The bulk acenaphthene crystal was grown in a single-wall ampoule by vertical Bridgman technique. X-ray diffraction analysis confirmed the orthorhombic crystal system of title compound with space group Pcm21. Thermal behavior of compound was studied using thermogravimetry—differential scanning calorimetry analysis. Thermal kinetic parameters like activation energy, frequency factor, Avrami exponent, reaction rate and degree of conversion were calculated using Kissingers and Ozawa methods under non-isothermal condition for acenaphthene crystal and reported for the first time. The calculated thermal kinetic parameters are presented. Dielectric studies were performed to calculate the dielectric parameters such as dielectric constant, dielectric loss, AC conductivity, and activation energy from Arrhenius plot.

Keywords

Dielectric Loss Frequency Factor Acenaphthene Organic Crystal Ozawa Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

One of the authors S. Karuppusamy thanks the Anna University authorities for financial support through Anna Centenary Research Fellowship (Lr No: CR/ACRF/JAN2012/36). The authors are thankful to SAIF—IIT Madras for instrumentation facility.

References

  1. 1.
    K. Aravinth, G. Anandha Babu, P. Ramasamy, J. Therm. Anal. Calorim. 1165, 117 (2014)Google Scholar
  2. 2.
    S.P. Prabhakaran, R. Ramesh Babu, G. Bhagavannarayana, K. Ramamurthi, Bull. Mater. Sci. 151, 37 (2014)Google Scholar
  3. 3.
    N. Vijayan, G. Bhagavannarayana, N. Balamurugan, R. Ramesh Babu, K.K. Maurya, R. Gopalakrishnan, P. Ramasamy, J. Cryst. Growth 318, 293 (2006)Google Scholar
  4. 4.
    T. Suthan, N.P. Rajesh, J. Cryst. Growth 3156, 312 (2010)Google Scholar
  5. 5.
    S. Ayers, M.M. Faktor, D. Marr, D.L. Stevenson, J. Mater. Sci. 31, 7 (1972)Google Scholar
  6. 6.
    K. Sakata, M. Mukai, G. Rajesh, M. Arivanandhan, Y. Inatomi, T. Ishikawa, Y. Hayakawa, Int. J. Thermophys. 352, 35 (2014)Google Scholar
  7. 7.
    C.W. Lan, C.Y. Tu, J. Cryst. Growth 406, 226 (2001)Google Scholar
  8. 8.
    R. Ma, H. Zhang, D.J. Larson Jr, K.C. Mandal, J. Cryst. Growth 216, 266 (2004)Google Scholar
  9. 9.
    S.T. Balint, L. Braescu, L. Sylla, S. Epure, T. Duffar, J. Cryst. Growth 1564, 310 (2008)Google Scholar
  10. 10.
    P. Dold, K.W. Benz, Cryst. Res. Technol. 51, 32 (1997)Google Scholar
  11. 11.
    C.W. Lan, Chem. Eng. Sci. 1437, 59 (2004)Google Scholar
  12. 12.
    M.G. Kim, G.O. Kim, B.K. Park, KSME Int. J. 1188, 15 (2001)Google Scholar
  13. 13.
    J.P. Garandet, T. Alboussiere, Prog. Cryst. Growth Charact. Mater. 133, 38 (1999)Google Scholar
  14. 14.
    D. Morvan, M.E. Ganaoui, P. Bontoux, Int. J. Heat Mass Transf. 573, 42 (1999)Google Scholar
  15. 15.
    J.R. Cahoon, Can. J. Phys. 140, 91 (2012)Google Scholar
  16. 16.
    J. Straszko, M. Olszak-Humienik, J. Możejko, J. Therm. Anal. 1415, 48 (1997)Google Scholar
  17. 17.
    M. Olszak-Humienik, J. Możejko, J. Therm. Anal. Calorim. 829, 56 (1999)Google Scholar
  18. 18.
    S.I. Ali, K. Majid, Thermochim. Acta 183, 317 (1998)Google Scholar
  19. 19.
    J. Straszko, M. Olszak-Humienik, J. Możejko, J. Therm. Anal. Calorim. 935, 59 (2000)Google Scholar
  20. 20.
    S.M. Sidel, F.A. Santos, V.O. Gordo, E. Idalgo, A.A. Monteiro, J.C.S. Moraes, K. Yukimitu, J. Therm. Anal. Calorim. 613, 106 (2011)Google Scholar
  21. 21.
    E.H. Kissinger, Anal. Chem. 1702, 29 (1957)Google Scholar
  22. 22.
    T. Ozawa, J. Therm. Anal. Calorim. 301, 2 (1970)Google Scholar
  23. 23.
    J.A. Augis, J.E. Bennett, J. Therm. Anal. Calorim. 283, 13 (1978)Google Scholar
  24. 24.
    E. Benavidez, L. Santini, E. Brandaleze, J. Therm. Anal. Calorim. 485, 103 (2011)Google Scholar
  25. 25.
    R. Ramesh Babu, N. Balamurugan, N. Vijayan, R. Gopalakrishnan, G. Bhagavannarayana, P. Ramasamy, J. Cryst. Growth 649, 285 (2005)Google Scholar
  26. 26.
    M.A. Lasheen, A.M. Abdeen, Acta Crystallogr. Sect. A. 245, 28 (1972)Google Scholar
  27. 27.
    R.M. Ribeiro, D.S. dos Santos, R.S. de Biasi, J. Alloys Compd. 227, 363 (2004)Google Scholar
  28. 28.
    A.A. Joraid, Thermochim. Acta 78, 436 (2005)Google Scholar
  29. 29.
    R.R. Peláa, L.S. Cividanesa, D.D. Brunellia, S.M. Zanettib, G.P. Thim, Mater. Res. 289, 11 (2008)Google Scholar
  30. 30.
    S. Lendvayova, K. Moricova, E. Jóna, S. Uherkova, J. Kraxner, V. Pavlík, R. Durny, S.C. Mojumdar, J. Therm. Anal. Calorim. 1133, 112 (2013)Google Scholar
  31. 31.
    Omer Kaygili, J. Therm. Anal. Calorim. 223, 117 (2014)Google Scholar
  32. 32.
    P.S. Latha Mageshwaria, R. Priya, S. Krishnan, V. Joseph, S. Jerome Das, Optik 2289, 125 (2014)Google Scholar
  33. 33.
    B. Uma, Rajnikant, K. Sakthi Murugesan, S. Krishnan, B. Milton Boaz, Prog. Nat. Sci. Mater. Int. 378, 24 (2014)Google Scholar
  34. 34.
    B. Lal, S.K. Khosa, R. Tickoo, K.K. Bamzai, P.N. Kotru, Mater. Chem. Phys. 158, 83 (2004)Google Scholar
  35. 35.
    Z. Osman, M.I. Mohd Ghazali, L. Othman, K.B. Md Isa, Results Phys. 1, 2 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • S. Karuppusamy
    • 1
  • K. Dinesh Babu
    • 1
  • V. Nirmal Kumar
    • 1
    • 2
  • R. Gopalakrishnan
    • 1
    Email author
  1. 1.Crystal Research Laboratory, Department of PhysicsAnna UniversityChennaiIndia
  2. 2.Research Institute of Electronics, Graduate School of Science and TechnologyShizuoka UniversityHamamatsuJapan

Personalised recommendations