Abstract
Thermal conductivity of thermoelectric \(\hbox {Bi}_{2}\hbox {Te}_{3}\) and \(\hbox {Yb}_{0.19}\hbox {Co}_{4}\hbox {Sb}_{12}\) thin nanolayers of different thicknesses prepared by pulsed laser deposition on Si (100) substrates was studied by a scanning thermal microscope working in AC current pulse mode. A sensitivity of the approach is demonstrated on the steep Si substrate-layer boundary made by a Ga+ focused ion beam technique. Transport and thermoelectric properties such as in-plane electrical resistivity and the Seebeck coefficient were studied in temperature range from room temperature up to \(200\,{}^{\circ }\hbox {C}\). The room temperature thermal conductivity of the layers was estimated from thermoelectric figure of merit that was measured by the Harman technique, in which parameters related to electrical conductivity, Seebeck coefficient and thermal conductivity are measured at the same place and at the same time with electrical current flowing through the layer. For \(\hbox {Yb}_{0.19}\hbox {Co}_{4}\hbox {Sb}_{12}\) and \(\hbox {Bi}_{2}\hbox {Te}_{3}\) layers, we observed room temperature electrical resistivity of about 7 and \(1\,\hbox {m}\Omega \,\hbox {cm}\), the Seebeck coefficient of \(-112\) and \(-61\,\upmu \hbox {VK}^{-1}\), thermoelectric figure of merit about 0.04 and 0.13 and we estimated thermal conductivity of about 1.3 and \(0.9\,\hbox {WK}^{-1}\hbox {m}^{-1}\), respectively.
This is a preview of subscription content, access via your institution.







References
X.F. Tang, Q. Zhang, L. Chen, T. Goto, T. Hirai, J. Appl. Phys. 97, 093712 (2005)
B.C. Sales, D. Mandrus, B.C. Chakoumakos, V. Keppens, J.R. Thompson, Phys. Rev. B 56, 15081 (1997)
J. Vaniš, J. Zelinka, R. Zeipl, M. Jelínek, T. Kocourek, J. Remsa, J. Navrátil, J. Electron. Mater. 45, 1734 (2016)
R. Zeipl, M. Jelínek, T. Kocourek, J. Remsa, J. Vaniš, M. Vlček, Sens.Transducers 183(12), 103 (2014)
M. Jelínek, R. Zeipl, T. Kocourek, J. Remsa, K. Jurek, J. Navrátil, Appl. Mech. Mater. 749, 46 (2015)
R. Zeipl, M. Jelínek, M. Vlček, T. Kocourek, J. Remsa, J. Vaniš, Laser Phys. 25, 015903 (2015)
T.C. Harman, J.H. Cahn, M.J. Logan, J. Appl. Phys. 30, 1351 (1959)
J. Walachová, R. Zeipl, J. Zelinka, V. Malina, Appl. Phys. Lett. 87, 081902 (2005)
R. Venkatasubramanian, E. Siivola, T. Colpitts, B.O. Quinn, Nature 413, 597 (2001)
H.M. Pollock, A. Hammiche, J. Phys. D Appl. Phys. 34, R23 (2001)
L.M. Goncalves, C. Couto, P. Alpuim, D.M. Rowe, J.H. Correia, Mater. Sci. Forum 514–516, 156 (2006)
J.R. Lim, G.J. Snyder, C.K. Huang, J.A. Herman, MA. Ryanand, J.P. Fleurial, in Proceedings of the 21st International Conference on Thermoelectrics, Long Beach, CA, 25–29 August 2002 535
J. Yang, Q. Hao, H. Wang, Y.C. Lan, Q.Y. He, A. Minnich, D.Z. Wang, J.A. Harriman, V.M. Varki, M.S. Dresselhaus, G. Chen, Z.F. Ren, Phys. Rev. B 80, 115329 (2009)
A.A. Wereszczak, H. Kong, C. Uher, J.R. Salvador, J. Yang, X. Shi, H. Wang, Philos. Mag. 89, 1517 (2009)
Acknowledgments
The project has been supported by Czech Grant Agency under P108/13-33056S.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zeipl, R., Jelínek, M., Vaniš, J. et al. Scanning thermal microscopy of Bi2Te3 and Yb0.19Co4Sb12 thermoelectric films. Appl. Phys. A 122, 478 (2016). https://doi.org/10.1007/s00339-016-0017-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-016-0017-8
Keywords
- Bi2Te3
- Seebeck Coefficient
- Thermal Signal
- Thermoelectric Figure
- Relative Thermal Conductivity