Applied Physics A

, 122:476 | Cite as

Trap density measurement in three-dimensional nanostructured photoelectrode of titanium dioxide with various morphologies

  • Pezhman Sasanpour
  • Raheleh MohammadpourEmail author


Three-dimensional TiO2 nanostructures take advantages of large surface area and superior light-harvesting efficiency, as well as appropriate charge carrier transport and separation features. Here in this research, we report for the first time on measurement of density of localized trap states in three-dimensional TiO2 nanostructures with various morphologies. Bare 1-dimensional TiO2 nanofibers have been synthesized via two different methods: electrospinning and hydrothermal processes. The surface of TiO2 nanofibrous has been modified with nanoparticles and nanobranches thorough second hydrothermal process. Various morphologies of nanostructured TiO2 have been fabricated including nanoparticulated nanofiber (NP-NF), nanostar (NS), nanofiber decorated with nanoparticle (NF-NP) and nanobranched nanofiber (NB-NF). The density and depth of localized trap states as well as the position of quasi-Fermi level have been measured using a double-switch method. The trap depths in various structures have been measured in the range of 250–370 meV and have been compared with typical nanoparticular electrodes. These results imply that in spite of morphological order in surface-modified one-dimensional nanostructures, high density of deep trap states might impose direct effect on electron transport features. Based on the results, the electronic structure of nanostructured photoelectrodes should be considered in all novel nanostructured optoelectronic devices.


TiO2 Photovoltaic Cell Trap State Deep Trap Electrospun Nanofibers 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Baratto, E. Comini, G. Faglia, G. Sberveglieri, M. Zha, A. Zappettini, Sens. Actuators B 109, 2 (2005)CrossRefGoogle Scholar
  2. 2.
    R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, Adv. Funct. Mater. 22, 3326 (2012)CrossRefGoogle Scholar
  3. 3.
    B. Hu, W. Chen, J. Zhou, Sens. Actuators B 176, 522 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Huang, Q. Wan, Sensors 9, 9903 (2009)CrossRefGoogle Scholar
  5. 5.
    R. Jose, V. Thavasi, S. Ramakrishna, J. Am. Ceram. Soc. 92(289), 289–301 (2009)CrossRefGoogle Scholar
  6. 6.
    X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 43, 473 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Ren, Z. Ma, P.G. Bruce, Chem. Soc. Rev. 41, 4909 (2012)CrossRefGoogle Scholar
  8. 8.
    T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg, Sensors 9, 6504 (2009)CrossRefGoogle Scholar
  9. 9.
    Q. Zhang, C.S. Dandeneau, X. Zhou, C. Cao, Adv. Mater. 21, 4087 (2009)CrossRefGoogle Scholar
  10. 10.
    Y. Bai, I. Mora-Seró, F. De Angelis, J. Bisquert, P. Wang, Chem. Rev. 114, 10095 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Le Bahers, T. Pauporté, P.P. Lainé, F. Labat, C. Adamo, I. Ciofini, J. Phys. Chem. Lett. 4, 1044 (2013)CrossRefGoogle Scholar
  12. 12.
    J.K. Lee, M. Yang, Mater. Sci. Eng. 176, 1142 (2011)CrossRefGoogle Scholar
  13. 13.
    W. Li, Z. Wu, J. Wang, A.A. Elzatahry, D. Zhao, Chem. Mater. 26, 287 (2014)CrossRefGoogle Scholar
  14. 14.
    A.S. Nair, Z. Peining, V.J. Babu, Y. Shengyuan, S. Ramakrishna, Phys. Chem. Chem. Phys. 13, 21248 (2011)CrossRefGoogle Scholar
  15. 15.
    E. Enache-Pommer, J.E. Boercker, E.S. Aydil, Appl. Phys. Lett. 91, 123116 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Frank, N. Kopidakis, J.V.D. Lagemaat, Coord. Chem. Rev. 248, 1165 (2004)CrossRefGoogle Scholar
  17. 17.
    P.T. Hsiao, Y.L. Tung, H. Teng, J. Phys. Chem. 114, 6762 (2010)Google Scholar
  18. 18.
    J.R. Jennings, A. Ghicov, L.M. Peter, P. Schmuki, A.B. Walker, J. Am. Chem. Soc. 130, 13364 (2008)CrossRefGoogle Scholar
  19. 19.
    Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, H. Imai, J. Phys. Chem. B 110, 25210 (2006)CrossRefGoogle Scholar
  20. 20.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    R. Mohammadpour, A. Iraji Zad, A. Hagfeldt, G. Boschloo, Phys. Chem. Chem. Phys. 13, 21487 (2011)CrossRefGoogle Scholar
  22. 22.
    R. Mohammadpour, A.I. Zad, A. Hagfeldt, G. Boschloo, ChemPhysChem 11, 2140 (2010)CrossRefGoogle Scholar
  23. 23.
    H. Wu, L. Hu, M.W. Rowell, D. Kong, J.J. Cha, J.R. McDonough, J. Zhu, Y. Yang, M.D. McGehee, Y. Cui, Nano Lett. 10, 4242 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    C. Xu, P.H. Shin, L. Cao, J. Wu, D. Gao, Chem. Mater. 22, 143 (2010)CrossRefGoogle Scholar
  25. 25.
    R. Buonsanti, E. Carlino, C. Giannini, D. Altamura, L. De Marco, R. Giannuzzi, M. Manca, G. Gigli, P.D. Cozzoli, J. Am. Chem. Soc. 133, 19216 (2011)CrossRefGoogle Scholar
  26. 26.
    H. Wang, Y. Bai, Q. Wu, W. Zhou, H. Zhang, J. Li, L. Guo, Phys. Chem. Chem. Phys. 13, 7008 (2011)CrossRefGoogle Scholar
  27. 27.
    W.Q. Wu, B.X. Lei, H.S. Rao, Y.F. Xu, Y.F. Wang, C.Y. Su, D.B. Kuang, Sci. Rep. 3, 1352 (2013)ADSGoogle Scholar
  28. 28.
    M.A. Henderson, Surf. Sci. Rep. 66, 185 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    A. Kubacka, M. Fernández-García, G. Colón, Chem. Rev. 112, 1555 (2012)CrossRefGoogle Scholar
  30. 30.
    C. Richter, C.A. Schmuttenmaer, Nat. Nanotechnol. 5, 769 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Medical Physics and Biomedical Engineering, School of MedicineShahid Beheshti University of Medical SciencesEvin, TehranIran
  2. 2.Computational Nano-Bioelectromagnetics Research Group, School of Nano-ScienceInstitute for Research in Fundamental Sciences (IPM)TehranIran
  3. 3.Biophotonics Lab, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
  4. 4.Institute for Nanoscience and NanotechnologySharif University of TechnologyTehranIran

Personalised recommendations