Skip to main content
Log in

Low-reflectance laser-induced surface nanostructures created with a picosecond laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using high-speed picosecond laser pulse irradiation, low-reflectance laser-induced periodic surface structures (LIPSS) have been created on polycrystalline silicon. The effects of laser fluence, scan speed, overlapping ratio and polarization angle on the formation of LIPSS are reported. The anti-reflective properties of periodic structures are discussed, and the ideal LIPSS for low surface reflectance is presented. A decrease of 35.7 % in average reflectance of the silicon wafer was achieved over the wavelength range of 400–860 nm when it was textured with LIPSS at high scan speeds of 4000 mm/s. Experimental results of broadband reflectance of silicon wafers textured with LIPSS have been compared with finite difference time domain simulations and are in good agreement, showing high predictability in reflectance values for different structures. The effects of changing the LIPSS profile, fill factor and valley depth on the surface reflectance were also analyzed through simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 23, 1–9 (2015)

    Article  Google Scholar 

  2. J.I. Gittleman, E.K. Sichel, H.W. Lehmann, R. Widmer, Textured silicon: a selective absorber for solar thermal conversion. Appl. Phys. Lett. 35, 742 (1979). doi:10.1063/1.90953

    Article  ADS  Google Scholar 

  3. A.W. Smith, A. Rohatgi, A new texturing geometry for producing high efficiency solar cells with no antireflection coatings. Sol. Energy Mater. Sol. Cells 29, 51–65 (1993)

    Article  Google Scholar 

  4. S. Winderbaum, O. Reinhold, F. Yun, Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 46, 239–248 (1997)

    Article  Google Scholar 

  5. D.H. Macdonald, A. Cuevas, M.J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, Texturing industrial multicrystalline silicon solar cells. Sol. Energy 76, 277–283 (2004)

    Article  ADS  Google Scholar 

  6. L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7(11), 3249–3252 (2007). doi:10.1021/nl071018b

    Article  ADS  Google Scholar 

  7. C.H. Sun, P. Jiang, B. Jiang, Broadband moth-eye antireflection coatings on silicon. Appl. Phys. Lett. 92, 061112 (2008). doi:10.1063/1.2870080

    Article  ADS  Google Scholar 

  8. A. Mavrokefalos, S.E. Han, S. Yerci, M.S. Branham, G. Chen, Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett. 12, 2792–2796 (2012). doi:10.1021/nl2045777

    Article  Google Scholar 

  9. K.X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 12, 1616–1619 (2012). doi:10.1021/nl204550q

    Article  ADS  Google Scholar 

  10. J. Zhu, C.M. Hsu, Z. Yu, S. Fan, Y. Cui, Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2010). doi:10.1021/nl9034237

    Article  ADS  Google Scholar 

  11. R.C. Enger, S.K. Case, Optical elements with ultrahigh spatial-frequency surface corrugations. Appl. Opt. 22(20), 15 (1983)

    Article  Google Scholar 

  12. T.K. Gaylord, W.E. Baird, M.G. Moharam, Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings. Appl. Opt. 25(24), 15 (1986)

    Article  Google Scholar 

  13. Y. Ono, Y. Kimura, Y. Ohta, N. Nishida, Antireflection effect in ultrahigh spatial-frequency holographic relief gratings. Appl. Opt. 26(6), 15 (1987)

    Google Scholar 

  14. T.K. Gaylord, E.N. Glytsis, M.G. Moharam, Zero-reflectivity homogeneous layers and high spatial frequency surface-relief gratings on lossy materials. Appl. Opt. 26(15), 1 (1987)

    Article  Google Scholar 

  15. D.H. Raguin, G.M. Morris, Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles. Appl Opt (1993). doi:10.1364/AO.32.002582

    Google Scholar 

  16. S. Chattopadhyay, Y.F. Huang, Y.J. Jen, A. Ganguly, K.H. Chen, L.C. Chen, Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R Rep. 69, 1–35 (2010)

    Article  Google Scholar 

  17. Y. Kanamori, M. Sasaki, K. Hane, Broadband antireflection gratings fabricated upon silicon substrates. Opt. Lett. 24(20), 1422–1424 (1999)

    Article  ADS  Google Scholar 

  18. C. David, P. Haberling, M. Schnieper, J. Sochtig, C. Zschokke, Nano-structured anti-reflective surfaces replicated by hot embossing. Microelectron. Eng. 61–62, 435–440 (2002)

    Article  Google Scholar 

  19. Y. Kanamori, E. Roy, Y. Chen, Antireflection sub-wavelength gratings fabricated by spin-coating replication. Microelectron. Eng. 78–79, 287–293 (2005)

    Article  Google Scholar 

  20. M. Birnbaum, Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36, 3688 (1965). doi:10.1063/1.1703071

    Article  ADS  MathSciNet  Google Scholar 

  21. J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe, Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Phys. Rev. B 27, 1155 (1983)

    Article  ADS  Google Scholar 

  22. W.J. Wang, Y.F. Lu, C.W. An, M.H. Hong, T.C. Chong, Controllable periodic structures on silicon wafer by CO2 laser irradiation. Appl. Surf. Sci. 186(1–4), 594–598 (2002)

    Article  ADS  Google Scholar 

  23. E.M. Hsu, T.H.R. Crawford, H.F. Tiedje, H.K. Haugen, Periodic surface structures on gallium phosphide after irradiation with 150 fs–7 ns laser pulses at 800 nm. Appl. Phys. Lett. 91, 111102 (2007). doi:10.1063/1.2779914

    Article  ADS  Google Scholar 

  24. N.R. Isenor, CO2 laser-produced ripple patterns on NixP1−x surfaces. Appl. Phys. Lett. 31, 148 (1977). doi:10.1063/1.89633

    Article  ADS  Google Scholar 

  25. S.E. Clark, D.C. Emmony, Ultraviolet-laser-induced periodic surface structures. Phys. Rev. B 40(4), 1 (1989)

    Article  Google Scholar 

  26. A.V. Demchuk, V.A. Labunov, Surface morphology and structure modification of silicon layers induced by nanosecond laser radiation. Appl. Surf. Sci. 86, 353–358 (1995)

    Article  ADS  Google Scholar 

  27. P.M. Fauchet, A.E. Siegman, Surface ripples on silicon and gallium arsenide under picosecond laser illumination. Appl. Phys. Lett. 40, 824 (1982). doi:10.1063/1.93274

    Article  ADS  Google Scholar 

  28. X. Zhu, H. Zhu, D. Liu, Y. Huang, X. Wang, H. Yu, S. Wang, X. Lin, P. Han, Picosecond laser microstructuring for black silicon solar cells. Adv. Mater. Res. 418–420, 217–221 (2012)

    Article  Google Scholar 

  29. A.M. Ozkan, A.P. Malshe, T.A. Railkar, W.D. Brown, Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters. Appl. Phys. Lett. 75(23), 6 (1999)

    Article  Google Scholar 

  30. B. Tan, K. Venkatakrishnan, A femtosecond laser-induced periodical surface structure on crystalline silicon. J. Micromech. Microeng. 16, 1080–1085 (2006)

    Article  ADS  Google Scholar 

  31. E.L. Gurevich, Self-organized nanopatterns in thin layers of superheated liquid metals. Phys. Rev. E 83, 031604 (2011). doi:10.1103/PhysRevE.83.031604

    Article  ADS  Google Scholar 

  32. A.Y. Vorobyev, C. Guo, Femtosecond laser nanostructuring of metals. Opt. Express 14(6), 2164 (2006)

    Article  ADS  Google Scholar 

  33. M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, J. Reif, Femtosecond laser ablation from dielectric materials: Comparison to arc discharge erosion. Appl. Phys. A 69(Suppl.), S355–S358 (1999)

    Article  ADS  Google Scholar 

  34. F. Costache, M. Henyk, J. Reif, Modification of dielectric surfaces with ultra-short laser pulses. Appl. Surf. Sci. 186(1–4), 352–357 (2002)

    Article  ADS  Google Scholar 

  35. Y. Li, V.A. Stoica, L. Endicott, G. Wang, H. Sun et al., Femtosecond laser-induced nanostructure formation in Sb2Te3. Appl. Phys. Lett. 99, 121903 (2011). doi:10.1063/1.3634014

    Article  ADS  Google Scholar 

  36. C. Daniel, J. Drummond, R.A. Giordano, Improving flexural strength of dental restorative ceramics using laser interference direct structuring. J. Am. Ceram. Soc. 91(10), 3455–3457 (2008)

    Article  Google Scholar 

  37. Y. Xing, J. Deng, Y. Lian, X. Feng, Femtosecond pulsed laser nanotexturing of Al2O3/TiC ceramic. Laser Phys. 23, 066002 (2013). doi:10.1088/1054-660X/23/6/066002

    Article  ADS  Google Scholar 

  38. E. Rebollar, S. Pérez, J.J. Hernández, I. Martín-Fabiani, D.R. Rueda, T.A. Ezquerra, M. Castillejo, Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films. Appl. Phys. Lett. 100, 041106 (2012). doi:10.1063/1.3679103

    Article  ADS  Google Scholar 

  39. E. Rebollar, S. Pérez, J.J. Hernández, I. Martín-Fabiani, D.R. Rueda, T.A. Ezquerra, M. Castillejo, Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space. Langmuir 27(9), 5596–5606 (2011). doi:10.1021/la200451c

    Article  Google Scholar 

  40. J. Bonse, H. Sturm, D. Schmidt, W. Kautek, Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air. Appl. Phys. A 71, 657–665 (2000). doi:10.1007/s003390000585

    Article  ADS  Google Scholar 

  41. A. Borowiec, H.K. Haugen, Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82(25), 23 (2003)

    Article  Google Scholar 

  42. F. Costache, S. Kouteva-Arguirova, J. Reif, Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation. Appl. Phys. A 79, 1429–1432 (2004). doi:10.1007/s00339-004-2803-y

    Article  ADS  Google Scholar 

  43. J. Bonse, M. Munz, H. Sturm, Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. J. Appl. Phys. 97, 013538 (2005). doi:10.1063/1.1827919

    Article  ADS  Google Scholar 

  44. T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, S. Hashimoto, Observation of laser-induced surface waves on flat silicon surface. Appl. Phys. Lett. 92, 013104 (2008). doi:10.1063/1.2828983

    Article  ADS  Google Scholar 

  45. Y. Han, S. Qu, Uniform self-organized grating fabricated by single femtosecond laser on dense flint (ZF6) glass. Appl. Phys. A 98, 167–170 (2010). doi:10.1007/s00339-009-5443-4

    Article  ADS  Google Scholar 

  46. X. Jia, T.Q. Jia, Y. Zhang, P.X. Xiong, D.H. Feng, Z.R. Sun, J.R. Qiu, Z.Z. Xu, Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses. Opt. Lett. 35(8), 1248–1250 (2010)

    Article  ADS  Google Scholar 

  47. E.M. Hsu, T.H.R. Crawford, C. Maunders, G.A. Botton, H.K. Haugen, Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation. Appl. Phys. Lett. 92, 221112 (2008). doi:10.1063/1.2936865

    Article  ADS  Google Scholar 

  48. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91(24), 12 (2003). doi:10.1103/PhysRevLett.91.247405

    Article  Google Scholar 

  49. J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl. Surf. Sci. 197–198(30), 891–895 (2002). doi:10.1016/S0169-4332(02)00450-6

    Article  Google Scholar 

  50. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser-induced periodic surface structure. I. Theory. Phys. Rev. 27(2), 1141–1154 (1983)

    ADS  Google Scholar 

  51. J.W. Yao, C.Y. Zhang, H.Y. Liu, Q.F. Dai, L.J. Wu, S. Lan, A.V. Gopal, V.A. Trofimov, T.M. Lysak, High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses. Opt. Express 20(2), 905–911 (2012). doi:10.1364/OE.20.000905

    Article  ADS  Google Scholar 

  52. A.Y. Vorobyev, C. Guo, Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Opt. Express 19(S5), A1036 (2011)

    Article  Google Scholar 

  53. H. Bao, X. Ruan, Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications. Opt. Lett. 35(20), 3378–3380 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to gratefully acknowledge the financial support provided for this study by the National Science Foundation (Grant Nos. CMMI-1030786 and CMMI-1300930).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung C. Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarbada, S., Huang, Z., Shin, Y.C. et al. Low-reflectance laser-induced surface nanostructures created with a picosecond laser . Appl. Phys. A 122, 453 (2016). https://doi.org/10.1007/s00339-016-0004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0004-0

Keywords

Navigation