Abstract
Using high-speed picosecond laser pulse irradiation, low-reflectance laser-induced periodic surface structures (LIPSS) have been created on polycrystalline silicon. The effects of laser fluence, scan speed, overlapping ratio and polarization angle on the formation of LIPSS are reported. The anti-reflective properties of periodic structures are discussed, and the ideal LIPSS for low surface reflectance is presented. A decrease of 35.7 % in average reflectance of the silicon wafer was achieved over the wavelength range of 400–860 nm when it was textured with LIPSS at high scan speeds of 4000 mm/s. Experimental results of broadband reflectance of silicon wafers textured with LIPSS have been compared with finite difference time domain simulations and are in good agreement, showing high predictability in reflectance values for different structures. The effects of changing the LIPSS profile, fill factor and valley depth on the surface reflectance were also analyzed through simulations.
Similar content being viewed by others
References
M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 23, 1–9 (2015)
J.I. Gittleman, E.K. Sichel, H.W. Lehmann, R. Widmer, Textured silicon: a selective absorber for solar thermal conversion. Appl. Phys. Lett. 35, 742 (1979). doi:10.1063/1.90953
A.W. Smith, A. Rohatgi, A new texturing geometry for producing high efficiency solar cells with no antireflection coatings. Sol. Energy Mater. Sol. Cells 29, 51–65 (1993)
S. Winderbaum, O. Reinhold, F. Yun, Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 46, 239–248 (1997)
D.H. Macdonald, A. Cuevas, M.J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, Texturing industrial multicrystalline silicon solar cells. Sol. Energy 76, 277–283 (2004)
L. Hu, G. Chen, Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7(11), 3249–3252 (2007). doi:10.1021/nl071018b
C.H. Sun, P. Jiang, B. Jiang, Broadband moth-eye antireflection coatings on silicon. Appl. Phys. Lett. 92, 061112 (2008). doi:10.1063/1.2870080
A. Mavrokefalos, S.E. Han, S. Yerci, M.S. Branham, G. Chen, Efficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications. Nano Lett. 12, 2792–2796 (2012). doi:10.1021/nl2045777
K.X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 12, 1616–1619 (2012). doi:10.1021/nl204550q
J. Zhu, C.M. Hsu, Z. Yu, S. Fan, Y. Cui, Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 10, 1979–1984 (2010). doi:10.1021/nl9034237
R.C. Enger, S.K. Case, Optical elements with ultrahigh spatial-frequency surface corrugations. Appl. Opt. 22(20), 15 (1983)
T.K. Gaylord, W.E. Baird, M.G. Moharam, Zero-reflectivity high spatial-frequency rectangular-groove dielectric surface-relief gratings. Appl. Opt. 25(24), 15 (1986)
Y. Ono, Y. Kimura, Y. Ohta, N. Nishida, Antireflection effect in ultrahigh spatial-frequency holographic relief gratings. Appl. Opt. 26(6), 15 (1987)
T.K. Gaylord, E.N. Glytsis, M.G. Moharam, Zero-reflectivity homogeneous layers and high spatial frequency surface-relief gratings on lossy materials. Appl. Opt. 26(15), 1 (1987)
D.H. Raguin, G.M. Morris, Analysis of antireflection-structured surfaces with continuous one-dimensional surface profiles. Appl Opt (1993). doi:10.1364/AO.32.002582
S. Chattopadhyay, Y.F. Huang, Y.J. Jen, A. Ganguly, K.H. Chen, L.C. Chen, Anti-reflecting and photonic nanostructures. Mater. Sci. Eng. R Rep. 69, 1–35 (2010)
Y. Kanamori, M. Sasaki, K. Hane, Broadband antireflection gratings fabricated upon silicon substrates. Opt. Lett. 24(20), 1422–1424 (1999)
C. David, P. Haberling, M. Schnieper, J. Sochtig, C. Zschokke, Nano-structured anti-reflective surfaces replicated by hot embossing. Microelectron. Eng. 61–62, 435–440 (2002)
Y. Kanamori, E. Roy, Y. Chen, Antireflection sub-wavelength gratings fabricated by spin-coating replication. Microelectron. Eng. 78–79, 287–293 (2005)
M. Birnbaum, Semiconductor surface damage produced by ruby lasers. J. Appl. Phys. 36, 3688 (1965). doi:10.1063/1.1703071
J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe, Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass. Phys. Rev. B 27, 1155 (1983)
W.J. Wang, Y.F. Lu, C.W. An, M.H. Hong, T.C. Chong, Controllable periodic structures on silicon wafer by CO2 laser irradiation. Appl. Surf. Sci. 186(1–4), 594–598 (2002)
E.M. Hsu, T.H.R. Crawford, H.F. Tiedje, H.K. Haugen, Periodic surface structures on gallium phosphide after irradiation with 150 fs–7 ns laser pulses at 800 nm. Appl. Phys. Lett. 91, 111102 (2007). doi:10.1063/1.2779914
N.R. Isenor, CO2 laser-produced ripple patterns on NixP1−x surfaces. Appl. Phys. Lett. 31, 148 (1977). doi:10.1063/1.89633
S.E. Clark, D.C. Emmony, Ultraviolet-laser-induced periodic surface structures. Phys. Rev. B 40(4), 1 (1989)
A.V. Demchuk, V.A. Labunov, Surface morphology and structure modification of silicon layers induced by nanosecond laser radiation. Appl. Surf. Sci. 86, 353–358 (1995)
P.M. Fauchet, A.E. Siegman, Surface ripples on silicon and gallium arsenide under picosecond laser illumination. Appl. Phys. Lett. 40, 824 (1982). doi:10.1063/1.93274
X. Zhu, H. Zhu, D. Liu, Y. Huang, X. Wang, H. Yu, S. Wang, X. Lin, P. Han, Picosecond laser microstructuring for black silicon solar cells. Adv. Mater. Res. 418–420, 217–221 (2012)
A.M. Ozkan, A.P. Malshe, T.A. Railkar, W.D. Brown, Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters. Appl. Phys. Lett. 75(23), 6 (1999)
B. Tan, K. Venkatakrishnan, A femtosecond laser-induced periodical surface structure on crystalline silicon. J. Micromech. Microeng. 16, 1080–1085 (2006)
E.L. Gurevich, Self-organized nanopatterns in thin layers of superheated liquid metals. Phys. Rev. E 83, 031604 (2011). doi:10.1103/PhysRevE.83.031604
A.Y. Vorobyev, C. Guo, Femtosecond laser nanostructuring of metals. Opt. Express 14(6), 2164 (2006)
M. Henyk, N. Vogel, D. Wolfframm, A. Tempel, J. Reif, Femtosecond laser ablation from dielectric materials: Comparison to arc discharge erosion. Appl. Phys. A 69(Suppl.), S355–S358 (1999)
F. Costache, M. Henyk, J. Reif, Modification of dielectric surfaces with ultra-short laser pulses. Appl. Surf. Sci. 186(1–4), 352–357 (2002)
Y. Li, V.A. Stoica, L. Endicott, G. Wang, H. Sun et al., Femtosecond laser-induced nanostructure formation in Sb2Te3. Appl. Phys. Lett. 99, 121903 (2011). doi:10.1063/1.3634014
C. Daniel, J. Drummond, R.A. Giordano, Improving flexural strength of dental restorative ceramics using laser interference direct structuring. J. Am. Ceram. Soc. 91(10), 3455–3457 (2008)
Y. Xing, J. Deng, Y. Lian, X. Feng, Femtosecond pulsed laser nanotexturing of Al2O3/TiC ceramic. Laser Phys. 23, 066002 (2013). doi:10.1088/1054-660X/23/6/066002
E. Rebollar, S. Pérez, J.J. Hernández, I. Martín-Fabiani, D.R. Rueda, T.A. Ezquerra, M. Castillejo, Ultraviolet and infrared femtosecond laser induced periodic surface structures on thin polymer films. Appl. Phys. Lett. 100, 041106 (2012). doi:10.1063/1.3679103
E. Rebollar, S. Pérez, J.J. Hernández, I. Martín-Fabiani, D.R. Rueda, T.A. Ezquerra, M. Castillejo, Assessment and formation mechanism of laser-induced periodic surface structures on polymer spin-coated films in real and reciprocal space. Langmuir 27(9), 5596–5606 (2011). doi:10.1021/la200451c
J. Bonse, H. Sturm, D. Schmidt, W. Kautek, Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air. Appl. Phys. A 71, 657–665 (2000). doi:10.1007/s003390000585
A. Borowiec, H.K. Haugen, Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl. Phys. Lett. 82(25), 23 (2003)
F. Costache, S. Kouteva-Arguirova, J. Reif, Sub–damage–threshold femtosecond laser ablation from crystalline Si: surface nanostructures and phase transformation. Appl. Phys. A 79, 1429–1432 (2004). doi:10.1007/s00339-004-2803-y
J. Bonse, M. Munz, H. Sturm, Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. J. Appl. Phys. 97, 013538 (2005). doi:10.1063/1.1827919
T. Tomita, Y. Fukumori, K. Kinoshita, S. Matsuo, S. Hashimoto, Observation of laser-induced surface waves on flat silicon surface. Appl. Phys. Lett. 92, 013104 (2008). doi:10.1063/1.2828983
Y. Han, S. Qu, Uniform self-organized grating fabricated by single femtosecond laser on dense flint (ZF6) glass. Appl. Phys. A 98, 167–170 (2010). doi:10.1007/s00339-009-5443-4
X. Jia, T.Q. Jia, Y. Zhang, P.X. Xiong, D.H. Feng, Z.R. Sun, J.R. Qiu, Z.Z. Xu, Periodic nanoripples in the surface and subsurface layers in ZnO irradiated by femtosecond laser pulses. Opt. Lett. 35(8), 1248–1250 (2010)
E.M. Hsu, T.H.R. Crawford, C. Maunders, G.A. Botton, H.K. Haugen, Cross-sectional study of periodic surface structures on gallium phosphide induced by ultrashort laser pulse irradiation. Appl. Phys. Lett. 92, 221112 (2008). doi:10.1063/1.2936865
Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys. Rev. Lett. 91(24), 12 (2003). doi:10.1103/PhysRevLett.91.247405
J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl. Surf. Sci. 197–198(30), 891–895 (2002). doi:10.1016/S0169-4332(02)00450-6
J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser-induced periodic surface structure. I. Theory. Phys. Rev. 27(2), 1141–1154 (1983)
J.W. Yao, C.Y. Zhang, H.Y. Liu, Q.F. Dai, L.J. Wu, S. Lan, A.V. Gopal, V.A. Trofimov, T.M. Lysak, High spatial frequency periodic structures induced on metal surface by femtosecond laser pulses. Opt. Express 20(2), 905–911 (2012). doi:10.1364/OE.20.000905
A.Y. Vorobyev, C. Guo, Antireflection effect of femtosecond laser-induced periodic surface structures on silicon. Opt. Express 19(S5), A1036 (2011)
H. Bao, X. Ruan, Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications. Opt. Lett. 35(20), 3378–3380 (2010)
Acknowledgments
The authors wish to gratefully acknowledge the financial support provided for this study by the National Science Foundation (Grant Nos. CMMI-1030786 and CMMI-1300930).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sarbada, S., Huang, Z., Shin, Y.C. et al. Low-reflectance laser-induced surface nanostructures created with a picosecond laser . Appl. Phys. A 122, 453 (2016). https://doi.org/10.1007/s00339-016-0004-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-016-0004-0