Skip to main content

Advertisement

Log in

Structural, mechanical and thermodynamic properties of N-dope BBi compound under pressure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural, mechanical and thermodynamic properties of N-dope BBi compound have been reported in the current study. The structural and mechanical results of the studied binary compounds (BN and BBi) and their ternary alloys BBi1−x N x structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation functional of Wu and Cohen which is an improved form of the most popular Perdew–Burke–Ernzerhof. The quasi-harmonic Debye model is used for the thermodynamic properties of studied materials. The basic physical properties of considered structures such as the equilibrium lattice parameter (a 0), bulk modulus (B 0), its pressure derivative (B′), elastic constants (C 11, C 12 and C 44), Kleinman’s internal-strain parameter (ƺ), shear modulus anisotropy (A), the average shear modulus (G), Young’s modulus (Y) and Poisson’s ratio (v), B 0/G ratio, microhardness parameter (H), Cauchy pressure (C″), and 1st and 2nd Lame constants (λ, μ), debye temperature (θ D), wave velocities (ν l, ν t and ν m), melting temperature (T m) and minimum thermal conductivity (κ min) have been calculated at zero pressure. In order to obtain more information, thermodynamic properties, such as internal energy (U), Helmoltz free energy (F), entropy (S), Debye temperature (θ D), thermal expansion (α), constant volume and pressure heat capacities (C V and C P ), are analyzed under the whole range from 0 to 20 GPa and temperature range from 0 to 1500 K. The obtained results of the studied binary compounds are in coincidence with experimental works.

Graphical Abstract

The calculated constant volume specific heat, C V , and constant pressure specific heat, C P , as functions of temperature for BN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Tixier, S.E. Webster, E.C. Young, T. Tiedje, S. Francoeur, A. Mascaraenhas, P. Wei, F. Schiettekatte, Band gaps of the dilute quaternary alloys GaNxAs1−x−yBiy and Ga1−yInyNxAs1−x. Appl. Phys. Lett. 86, 112113 (2005)

    Article  ADS  Google Scholar 

  2. V. Gottschalch, G. Leibiger, G. Benndorf, MOVPE growth of BxGa1−xAs, BxGa1−x−yInyAs, and BxAl1−xAs alloys on (0 0 1) GaAs. J. Cryst. Growth 248, 468–473 (2003)

    Article  ADS  Google Scholar 

  3. C.Z. Zhao, N.N. Li, T. Wei, S.S. Wang, K.Q. Lu, Bandgap evolution of GaN1−xAsx in the whole composition range. Appl. Phys. A 115, 927–930 (2014)

    Article  ADS  Google Scholar 

  4. Y. Shimotsuma, T. Sei, M. Mori, M. Sakakura, K. Miura, Self-organization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials. Appl. Phys. A 122, 159 (2016)

    Article  ADS  Google Scholar 

  5. A.W. Bett, F. Dimroth, G. Stollwerck, O.V. Sulima, III–V compounds for solar cell applications. Appl. Phys. A 69, 119–129 (1999)

    Article  ADS  Google Scholar 

  6. R.H. Wentorf Jr, R.C. Devries, F.P. Bundy, Sintered superhard materials. Science 208, 873 (1980)

    Article  ADS  Google Scholar 

  7. O. Mishima, J.J. Pouch, S.A. Alterovitz (eds.), Synthesis and Properties of Boron Nitride, vol. 54–55 (Trans Tech, Aedermannsdorf, 1990), p. 313

    Google Scholar 

  8. G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973)

    Article  ADS  Google Scholar 

  9. O. Madelung, Numerical Data and Functional Relationships in Science and Technology—Crystal and Solid State Physics. Vol. III of Landolt-Bornstein (Springer, Berlin, 1972)

    Google Scholar 

  10. R.H. Wentorf, Cubic form of boron nitride. J. Chem. Phys. 26, 956 (1957)

    Article  ADS  Google Scholar 

  11. M. Ustundag, M. Aslan, B.G. Yalcin, The first-principles study on physical properties and phase stability of Boron-V (BN, BP, BAs, BSb and BBi) compounds. Comput. Mater. Sci. 81, 471–477 (2014)

    Article  Google Scholar 

  12. K. Amara, B. Soudini, D. Rached, A. Boudali, Molecular dynamics simulations of the structural, elastic and thermodynamic properties of cubic BBi. Comput. Mater. Sci. 44, 635–640 (2008)

    Article  Google Scholar 

  13. E. Deligoz, K. Colakoglu, Y.O. Ciftci, H. Ozisik, The first principles study on boron bismuth compound. Comput. Mater. Sci. 39, 533–540 (2007)

    Article  Google Scholar 

  14. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Rev. Ed. WIEN2K 13.1 (Vienna University of Technology, Austria, 2001)

  15. Z. Wu, R.E. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. M.A. Blanco, E. Francisco, V. Luana, GIBBS: isothermal–isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004)

    Article  MATH  ADS  Google Scholar 

  18. F.P. Bundy, R.H. Wentorf, Direct transformation of hexagonal boron nitride to denser forms. J. Chem. Phys. 38, 1144–1149 (1963)

    Article  ADS  Google Scholar 

  19. R. de Paiva, R.A. Nogueira, S. Azevedo, J.R. Kaschny, Effective mass properties of Al1−xBxN ordered alloys: a first-principles study. Appl. Phys. A 95, 655–659 (2009)

    Article  ADS  Google Scholar 

  20. M. Ferhat, A. Zaoui, Structural and electronic properties of III–V bismuth compounds. Phys. Rev. B 73, 115107 (2006)

    Article  ADS  Google Scholar 

  21. L. Vegard, Formation of mixed crystals by solid-phase contact. Z. Phys. 17, 2 (1921)

    Google Scholar 

  22. W.J. Fan, S.F. Yoon, W.K. Cheah, W.K. Loke, T.K. Ng, S.Z. Wang, R. Liu, A. Wee, Determination of nitrogen composition in GaNxAs1−x epilayer on GaAs. J. Cryst. Growth 268, 470 (2004)

    Article  ADS  Google Scholar 

  23. P. Carrier, S.-H. Wei, S.B. Zhang, S. Kurtz, Evolution of structural properties and formation of N–N split interstitials in GaAs1−xNx alloys. Phys. Rev. B 71, 165212 (2005)

    Article  ADS  Google Scholar 

  24. B. Fluegel, S. Francoeur, A. Mascarenhas, Giant spin-orbit bowing in GaAs1−xBix. Phys. Rev. Lett. 97, 067205 (2006)

    Article  ADS  Google Scholar 

  25. D.J. Chadi, Spin-orbit splitting in crystalline and compositionally disordered semiconductors. Phys. Rev. B 16, 790 (1977)

    Article  ADS  Google Scholar 

  26. Y. Zhang, A. Mascarenhas, L.W. Wang, Similar and dissimilar aspects of III–V semiconductors containing Bi versus N. Phys. Rev. B 71, 155201 (2005)

    Article  ADS  Google Scholar 

  27. E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and Their Measurement (Mc Graw-Hill, New York, 1973)

    Google Scholar 

  28. M. Grimsditch, E.S. Zouboulis, A. Polian, Elastic constants of boron nitride. J. Appl. Phys. 76, 832–833 (1994)

    Article  ADS  Google Scholar 

  29. K. Kim, W.R.L. Lambrecht, B. Segall, Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Phys. Rev. B 53, 16310 (1996)

    Article  ADS  Google Scholar 

  30. D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972)

    Google Scholar 

  31. L. Vitos, P.A. Korzhavyi, B. Johansson, Stainless steel optimization from quantum mechanical calculations. Nat. Mater. 2, 25 (2003)

    Article  ADS  Google Scholar 

  32. M. Sundareswari, S. Ramasubramaian, M. Rajagopalan, Elastic and thermodynamical properties of A15 Nb3X (X = Al, Ga, In, Sn and Sb) compounds—first principles DFT study. Solid State Commun. 150, 2057–2060 (2010)

    Article  ADS  Google Scholar 

  33. L. Kleinman, Deformation potentials in silicon I. Uniaxial strain. Phys. Rev. 128, 2614–2621 (1962)

    Article  MATH  ADS  Google Scholar 

  34. S.Q. Wang, H.Q. Ye, First-principles study on elastic properties and phase stability of III–V compounds. Phys. Status Solidi B 240, 45–54 (2003)

    Article  ADS  Google Scholar 

  35. R.M. Martin, Elastic properties of ZnS structure semiconductors. Phys. Rev. B 1, 4005–4011 (1970)

    Article  ADS  Google Scholar 

  36. W. Cady, Piezoelectricity (McGraw-Hill, New York, 1946)

    Google Scholar 

  37. W.A. Harrison, Elastic Structure and Properties of Solids (Dover Publications Inc, New York, 1980)

    Google Scholar 

  38. V.I. Razumovskiy, A.V. Ruban, P.A. Korzhavyi, First-principles study of elastic properties of Cr- and Fe-rich Fe–Cr alloys. Phys. Rev. B 84, 024106–024108 (2011)

    Article  ADS  Google Scholar 

  39. W. Voight, Uber die Beziehung Zwischen den Beiden Elastieitatconstanten Isotroper. Ann. Phys. (Leipzig) 38, 573 (1889)

    Article  ADS  Google Scholar 

  40. A. Reuss, Berechnung der Fliessgrenze von Mischkristallen aut Grund der Plastizitats-bedingung fur Einkristalle. Z. Angew. Math. Mech. 9, 49 (1929)

    Article  MATH  Google Scholar 

  41. R. Hill, The elastic behaviour of a crystalline aggregate, in Proceedings of the Physical Society. Section A, vol 65, (1952), p. 349

  42. S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)

    Article  Google Scholar 

  43. Z. Dang, M. Pang, Y. Mo, Y. Zhan, Theoretical prediction of structural, elastic and electronic properties of Si-doped TiCuGe intermetallics. Curr. Appl. Phys. 13, 549–555 (2013)

    Article  ADS  Google Scholar 

  44. E.S. Yousef, A. El-Adawy, N. El-KheshKhany, Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Commun. 139, 108 (2006)

    Article  ADS  Google Scholar 

  45. D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345 (1992)

    Article  Google Scholar 

  46. K. Chen, L.R. Zhao, J. Rodgers, J.S. Tse, Alloying effects on elastic properties of TiN-based nitrides. J. Phys. D Appl. Phys. 36, 2725–2729 (2003)

    Article  ADS  Google Scholar 

  47. M. Jamal, S.J. Asadabadi, I. Ahmad, H.A.R. Aliabad, Elastic constants of cubic crystals. Comput. Mater. Sci. 95, 592–599 (2014)

    Article  Google Scholar 

  48. http://en.wikiversity.org/wiki/Introduction_to_Elasticity/

  49. Q. Fan, Q. Wei, H. Yan, M. Zhang, Z. Zhang, J. Zhang, D. Zhang, Elastic and electronic properties of Pbca-BN: first-principles calculations. Comput. Mater. Sci. 85, 80–87 (2014)

    Article  Google Scholar 

  50. O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963)

    Article  ADS  Google Scholar 

  51. E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and Their Measurements, 3rd edn. (McGraw-Hill, New York, 1973)

    Google Scholar 

  52. M.E. Fine, L.D. Brown, H.L. Marcus, Elastic constants versus melting temperature in metals. Scr. Metall. 18, 951–956 (1984)

    Article  Google Scholar 

  53. D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Tech. 163, 67–74 (2003)

    Article  Google Scholar 

  54. Y.S. Touloukian, E.H. Buyco, Specific Heat: Nonmetallic Solids, Vol. 5 of Thermophysical Properties of Matter (IFI-Prenum, New York, 1970)

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) (Project No: 114F479).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Battal G. Yalcin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yalcin, B.G. Structural, mechanical and thermodynamic properties of N-dope BBi compound under pressure. Appl. Phys. A 122, 456 (2016). https://doi.org/10.1007/s00339-016-0003-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0003-1

Keywords

Navigation