Abstract
The structural, mechanical and thermodynamic properties of N-dope BBi compound have been reported in the current study. The structural and mechanical results of the studied binary compounds (BN and BBi) and their ternary alloys BBi1−x N x structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation functional of Wu and Cohen which is an improved form of the most popular Perdew–Burke–Ernzerhof. The quasi-harmonic Debye model is used for the thermodynamic properties of studied materials. The basic physical properties of considered structures such as the equilibrium lattice parameter (a 0), bulk modulus (B 0), its pressure derivative (B′), elastic constants (C 11, C 12 and C 44), Kleinman’s internal-strain parameter (ƺ), shear modulus anisotropy (A), the average shear modulus (G), Young’s modulus (Y) and Poisson’s ratio (v), B 0/G ratio, microhardness parameter (H), Cauchy pressure (C″), and 1st and 2nd Lame constants (λ, μ), debye temperature (θ D), wave velocities (ν l, ν t and ν m), melting temperature (T m) and minimum thermal conductivity (κ min) have been calculated at zero pressure. In order to obtain more information, thermodynamic properties, such as internal energy (U), Helmoltz free energy (F), entropy (S), Debye temperature (θ D), thermal expansion (α), constant volume and pressure heat capacities (C V and C P ), are analyzed under the whole range from 0 to 20 GPa and temperature range from 0 to 1500 K. The obtained results of the studied binary compounds are in coincidence with experimental works.
Graphical Abstract
The calculated constant volume specific heat, C V , and constant pressure specific heat, C P , as functions of temperature for BN.
Similar content being viewed by others
References
S. Tixier, S.E. Webster, E.C. Young, T. Tiedje, S. Francoeur, A. Mascaraenhas, P. Wei, F. Schiettekatte, Band gaps of the dilute quaternary alloys GaNxAs1−x−yBiy and Ga1−yInyNxAs1−x. Appl. Phys. Lett. 86, 112113 (2005)
V. Gottschalch, G. Leibiger, G. Benndorf, MOVPE growth of BxGa1−xAs, BxGa1−x−yInyAs, and BxAl1−xAs alloys on (0 0 1) GaAs. J. Cryst. Growth 248, 468–473 (2003)
C.Z. Zhao, N.N. Li, T. Wei, S.S. Wang, K.Q. Lu, Bandgap evolution of GaN1−xAsx in the whole composition range. Appl. Phys. A 115, 927–930 (2014)
Y. Shimotsuma, T. Sei, M. Mori, M. Sakakura, K. Miura, Self-organization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials. Appl. Phys. A 122, 159 (2016)
A.W. Bett, F. Dimroth, G. Stollwerck, O.V. Sulima, III–V compounds for solar cell applications. Appl. Phys. A 69, 119–129 (1999)
R.H. Wentorf Jr, R.C. Devries, F.P. Bundy, Sintered superhard materials. Science 208, 873 (1980)
O. Mishima, J.J. Pouch, S.A. Alterovitz (eds.), Synthesis and Properties of Boron Nitride, vol. 54–55 (Trans Tech, Aedermannsdorf, 1990), p. 313
G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973)
O. Madelung, Numerical Data and Functional Relationships in Science and Technology—Crystal and Solid State Physics. Vol. III of Landolt-Bornstein (Springer, Berlin, 1972)
R.H. Wentorf, Cubic form of boron nitride. J. Chem. Phys. 26, 956 (1957)
M. Ustundag, M. Aslan, B.G. Yalcin, The first-principles study on physical properties and phase stability of Boron-V (BN, BP, BAs, BSb and BBi) compounds. Comput. Mater. Sci. 81, 471–477 (2014)
K. Amara, B. Soudini, D. Rached, A. Boudali, Molecular dynamics simulations of the structural, elastic and thermodynamic properties of cubic BBi. Comput. Mater. Sci. 44, 635–640 (2008)
E. Deligoz, K. Colakoglu, Y.O. Ciftci, H. Ozisik, The first principles study on boron bismuth compound. Comput. Mater. Sci. 39, 533–540 (2007)
P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Rev. Ed. WIEN2K 13.1 (Vienna University of Technology, Austria, 2001)
Z. Wu, R.E. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006)
F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244 (1944)
M.A. Blanco, E. Francisco, V. Luana, GIBBS: isothermal–isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004)
F.P. Bundy, R.H. Wentorf, Direct transformation of hexagonal boron nitride to denser forms. J. Chem. Phys. 38, 1144–1149 (1963)
R. de Paiva, R.A. Nogueira, S. Azevedo, J.R. Kaschny, Effective mass properties of Al1−xBxN ordered alloys: a first-principles study. Appl. Phys. A 95, 655–659 (2009)
M. Ferhat, A. Zaoui, Structural and electronic properties of III–V bismuth compounds. Phys. Rev. B 73, 115107 (2006)
L. Vegard, Formation of mixed crystals by solid-phase contact. Z. Phys. 17, 2 (1921)
W.J. Fan, S.F. Yoon, W.K. Cheah, W.K. Loke, T.K. Ng, S.Z. Wang, R. Liu, A. Wee, Determination of nitrogen composition in GaNxAs1−x epilayer on GaAs. J. Cryst. Growth 268, 470 (2004)
P. Carrier, S.-H. Wei, S.B. Zhang, S. Kurtz, Evolution of structural properties and formation of N–N split interstitials in GaAs1−xNx alloys. Phys. Rev. B 71, 165212 (2005)
B. Fluegel, S. Francoeur, A. Mascarenhas, Giant spin-orbit bowing in GaAs1−xBix. Phys. Rev. Lett. 97, 067205 (2006)
D.J. Chadi, Spin-orbit splitting in crystalline and compositionally disordered semiconductors. Phys. Rev. B 16, 790 (1977)
Y. Zhang, A. Mascarenhas, L.W. Wang, Similar and dissimilar aspects of III–V semiconductors containing Bi versus N. Phys. Rev. B 71, 155201 (2005)
E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and Their Measurement (Mc Graw-Hill, New York, 1973)
M. Grimsditch, E.S. Zouboulis, A. Polian, Elastic constants of boron nitride. J. Appl. Phys. 76, 832–833 (1994)
K. Kim, W.R.L. Lambrecht, B. Segall, Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Phys. Rev. B 53, 16310 (1996)
D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972)
L. Vitos, P.A. Korzhavyi, B. Johansson, Stainless steel optimization from quantum mechanical calculations. Nat. Mater. 2, 25 (2003)
M. Sundareswari, S. Ramasubramaian, M. Rajagopalan, Elastic and thermodynamical properties of A15 Nb3X (X = Al, Ga, In, Sn and Sb) compounds—first principles DFT study. Solid State Commun. 150, 2057–2060 (2010)
L. Kleinman, Deformation potentials in silicon I. Uniaxial strain. Phys. Rev. 128, 2614–2621 (1962)
S.Q. Wang, H.Q. Ye, First-principles study on elastic properties and phase stability of III–V compounds. Phys. Status Solidi B 240, 45–54 (2003)
R.M. Martin, Elastic properties of ZnS structure semiconductors. Phys. Rev. B 1, 4005–4011 (1970)
W. Cady, Piezoelectricity (McGraw-Hill, New York, 1946)
W.A. Harrison, Elastic Structure and Properties of Solids (Dover Publications Inc, New York, 1980)
V.I. Razumovskiy, A.V. Ruban, P.A. Korzhavyi, First-principles study of elastic properties of Cr- and Fe-rich Fe–Cr alloys. Phys. Rev. B 84, 024106–024108 (2011)
W. Voight, Uber die Beziehung Zwischen den Beiden Elastieitatconstanten Isotroper. Ann. Phys. (Leipzig) 38, 573 (1889)
A. Reuss, Berechnung der Fliessgrenze von Mischkristallen aut Grund der Plastizitats-bedingung fur Einkristalle. Z. Angew. Math. Mech. 9, 49 (1929)
R. Hill, The elastic behaviour of a crystalline aggregate, in Proceedings of the Physical Society. Section A, vol 65, (1952), p. 349
S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)
Z. Dang, M. Pang, Y. Mo, Y. Zhan, Theoretical prediction of structural, elastic and electronic properties of Si-doped TiCuGe intermetallics. Curr. Appl. Phys. 13, 549–555 (2013)
E.S. Yousef, A. El-Adawy, N. El-KheshKhany, Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Commun. 139, 108 (2006)
D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345 (1992)
K. Chen, L.R. Zhao, J. Rodgers, J.S. Tse, Alloying effects on elastic properties of TiN-based nitrides. J. Phys. D Appl. Phys. 36, 2725–2729 (2003)
M. Jamal, S.J. Asadabadi, I. Ahmad, H.A.R. Aliabad, Elastic constants of cubic crystals. Comput. Mater. Sci. 95, 592–599 (2014)
Q. Fan, Q. Wei, H. Yan, M. Zhang, Z. Zhang, J. Zhang, D. Zhang, Elastic and electronic properties of Pbca-BN: first-principles calculations. Comput. Mater. Sci. 85, 80–87 (2014)
O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963)
E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and Their Measurements, 3rd edn. (McGraw-Hill, New York, 1973)
M.E. Fine, L.D. Brown, H.L. Marcus, Elastic constants versus melting temperature in metals. Scr. Metall. 18, 951–956 (1984)
D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Tech. 163, 67–74 (2003)
Y.S. Touloukian, E.H. Buyco, Specific Heat: Nonmetallic Solids, Vol. 5 of Thermophysical Properties of Matter (IFI-Prenum, New York, 1970)
Acknowledgments
This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK) (Project No: 114F479).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yalcin, B.G. Structural, mechanical and thermodynamic properties of N-dope BBi compound under pressure. Appl. Phys. A 122, 456 (2016). https://doi.org/10.1007/s00339-016-0003-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00339-016-0003-1