Applied Physics A

, 122:456

Structural, mechanical and thermodynamic properties of N-dope BBi compound under pressure

Article

Abstract

The structural, mechanical and thermodynamic properties of N-dope BBi compound have been reported in the current study. The structural and mechanical results of the studied binary compounds (BN and BBi) and their ternary alloys BBi1−xNx structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation functional of Wu and Cohen which is an improved form of the most popular Perdew–Burke–Ernzerhof. The quasi-harmonic Debye model is used for the thermodynamic properties of studied materials. The basic physical properties of considered structures such as the equilibrium lattice parameter (a0), bulk modulus (B0), its pressure derivative (B′), elastic constants (C11, C12 and C44), Kleinman’s internal-strain parameter (ƺ), shear modulus anisotropy (A), the average shear modulus (G), Young’s modulus (Y) and Poisson’s ratio (v), B0/G ratio, microhardness parameter (H), Cauchy pressure (C″), and 1st and 2nd Lame constants (λ, μ), debye temperature (θD), wave velocities (νl, νt and νm), melting temperature (Tm) and minimum thermal conductivity (κmin) have been calculated at zero pressure. In order to obtain more information, thermodynamic properties, such as internal energy (U), Helmoltz free energy (F), entropy (S), Debye temperature (θD), thermal expansion (α), constant volume and pressure heat capacities (CV and CP), are analyzed under the whole range from 0 to 20 GPa and temperature range from 0 to 1500 K. The obtained results of the studied binary compounds are in coincidence with experimental works.

Graphical Abstract

The calculated constant volume specific heat, CV, and constant pressure specific heat, CP, as functions of temperature for BN.

References

  1. 1.
    S. Tixier, S.E. Webster, E.C. Young, T. Tiedje, S. Francoeur, A. Mascaraenhas, P. Wei, F. Schiettekatte, Band gaps of the dilute quaternary alloys GaNxAs1−x−yBiy and Ga1−yInyNxAs1−x. Appl. Phys. Lett. 86, 112113 (2005)CrossRefADSGoogle Scholar
  2. 2.
    V. Gottschalch, G. Leibiger, G. Benndorf, MOVPE growth of BxGa1−xAs, BxGa1−x−yInyAs, and BxAl1−xAs alloys on (0 0 1) GaAs. J. Cryst. Growth 248, 468–473 (2003)CrossRefADSGoogle Scholar
  3. 3.
    C.Z. Zhao, N.N. Li, T. Wei, S.S. Wang, K.Q. Lu, Bandgap evolution of GaN1−xAsx in the whole composition range. Appl. Phys. A 115, 927–930 (2014)CrossRefADSGoogle Scholar
  4. 4.
    Y. Shimotsuma, T. Sei, M. Mori, M. Sakakura, K. Miura, Self-organization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials. Appl. Phys. A 122, 159 (2016)CrossRefADSGoogle Scholar
  5. 5.
    A.W. Bett, F. Dimroth, G. Stollwerck, O.V. Sulima, III–V compounds for solar cell applications. Appl. Phys. A 69, 119–129 (1999)CrossRefADSGoogle Scholar
  6. 6.
    R.H. Wentorf Jr, R.C. Devries, F.P. Bundy, Sintered superhard materials. Science 208, 873 (1980)CrossRefADSGoogle Scholar
  7. 7.
    O. Mishima, J.J. Pouch, S.A. Alterovitz (eds.), Synthesis and Properties of Boron Nitride, vol. 54–55 (Trans Tech, Aedermannsdorf, 1990), p. 313Google Scholar
  8. 8.
    G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34, 321–335 (1973)CrossRefADSGoogle Scholar
  9. 9.
    O. Madelung, Numerical Data and Functional Relationships in Science and Technology—Crystal and Solid State Physics. Vol. III of Landolt-Bornstein (Springer, Berlin, 1972)Google Scholar
  10. 10.
    R.H. Wentorf, Cubic form of boron nitride. J. Chem. Phys. 26, 956 (1957)CrossRefADSGoogle Scholar
  11. 11.
    M. Ustundag, M. Aslan, B.G. Yalcin, The first-principles study on physical properties and phase stability of Boron-V (BN, BP, BAs, BSb and BBi) compounds. Comput. Mater. Sci. 81, 471–477 (2014)CrossRefGoogle Scholar
  12. 12.
    K. Amara, B. Soudini, D. Rached, A. Boudali, Molecular dynamics simulations of the structural, elastic and thermodynamic properties of cubic BBi. Comput. Mater. Sci. 44, 635–640 (2008)CrossRefGoogle Scholar
  13. 13.
    E. Deligoz, K. Colakoglu, Y.O. Ciftci, H. Ozisik, The first principles study on boron bismuth compound. Comput. Mater. Sci. 39, 533–540 (2007)CrossRefGoogle Scholar
  14. 14.
    P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Rev. Ed. WIEN2K 13.1 (Vienna University of Technology, Austria, 2001)Google Scholar
  15. 15.
    Z. Wu, R.E. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006)CrossRefADSMathSciNetGoogle Scholar
  16. 16.
    F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244 (1944)CrossRefMATHADSMathSciNetGoogle Scholar
  17. 17.
    M.A. Blanco, E. Francisco, V. Luana, GIBBS: isothermal–isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004)CrossRefMATHADSGoogle Scholar
  18. 18.
    F.P. Bundy, R.H. Wentorf, Direct transformation of hexagonal boron nitride to denser forms. J. Chem. Phys. 38, 1144–1149 (1963)CrossRefADSGoogle Scholar
  19. 19.
    R. de Paiva, R.A. Nogueira, S. Azevedo, J.R. Kaschny, Effective mass properties of Al1−xBxN ordered alloys: a first-principles study. Appl. Phys. A 95, 655–659 (2009)CrossRefADSGoogle Scholar
  20. 20.
    M. Ferhat, A. Zaoui, Structural and electronic properties of III–V bismuth compounds. Phys. Rev. B 73, 115107 (2006)CrossRefADSGoogle Scholar
  21. 21.
    L. Vegard, Formation of mixed crystals by solid-phase contact. Z. Phys. 17, 2 (1921)Google Scholar
  22. 22.
    W.J. Fan, S.F. Yoon, W.K. Cheah, W.K. Loke, T.K. Ng, S.Z. Wang, R. Liu, A. Wee, Determination of nitrogen composition in GaNxAs1−x epilayer on GaAs. J. Cryst. Growth 268, 470 (2004)CrossRefADSGoogle Scholar
  23. 23.
    P. Carrier, S.-H. Wei, S.B. Zhang, S. Kurtz, Evolution of structural properties and formation of N–N split interstitials in GaAs1−xNx alloys. Phys. Rev. B 71, 165212 (2005)CrossRefADSGoogle Scholar
  24. 24.
    B. Fluegel, S. Francoeur, A. Mascarenhas, Giant spin-orbit bowing in GaAs1−xBix. Phys. Rev. Lett. 97, 067205 (2006)CrossRefADSGoogle Scholar
  25. 25.
    D.J. Chadi, Spin-orbit splitting in crystalline and compositionally disordered semiconductors. Phys. Rev. B 16, 790 (1977)CrossRefADSGoogle Scholar
  26. 26.
    Y. Zhang, A. Mascarenhas, L.W. Wang, Similar and dissimilar aspects of III–V semiconductors containing Bi versus N. Phys. Rev. B 71, 155201 (2005)CrossRefADSGoogle Scholar
  27. 27.
    E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and Their Measurement (Mc Graw-Hill, New York, 1973)Google Scholar
  28. 28.
    M. Grimsditch, E.S. Zouboulis, A. Polian, Elastic constants of boron nitride. J. Appl. Phys. 76, 832–833 (1994)CrossRefADSGoogle Scholar
  29. 29.
    K. Kim, W.R.L. Lambrecht, B. Segall, Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Phys. Rev. B 53, 16310 (1996)CrossRefADSGoogle Scholar
  30. 30.
    D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1972)Google Scholar
  31. 31.
    L. Vitos, P.A. Korzhavyi, B. Johansson, Stainless steel optimization from quantum mechanical calculations. Nat. Mater. 2, 25 (2003)CrossRefADSGoogle Scholar
  32. 32.
    M. Sundareswari, S. Ramasubramaian, M. Rajagopalan, Elastic and thermodynamical properties of A15 Nb3X (X = Al, Ga, In, Sn and Sb) compounds—first principles DFT study. Solid State Commun. 150, 2057–2060 (2010)CrossRefADSGoogle Scholar
  33. 33.
    L. Kleinman, Deformation potentials in silicon I. Uniaxial strain. Phys. Rev. 128, 2614–2621 (1962)CrossRefMATHADSGoogle Scholar
  34. 34.
    S.Q. Wang, H.Q. Ye, First-principles study on elastic properties and phase stability of III–V compounds. Phys. Status Solidi B 240, 45–54 (2003)CrossRefADSGoogle Scholar
  35. 35.
    R.M. Martin, Elastic properties of ZnS structure semiconductors. Phys. Rev. B 1, 4005–4011 (1970)CrossRefADSGoogle Scholar
  36. 36.
    W. Cady, Piezoelectricity (McGraw-Hill, New York, 1946)Google Scholar
  37. 37.
    W.A. Harrison, Elastic Structure and Properties of Solids (Dover Publications Inc, New York, 1980)Google Scholar
  38. 38.
    V.I. Razumovskiy, A.V. Ruban, P.A. Korzhavyi, First-principles study of elastic properties of Cr- and Fe-rich Fe–Cr alloys. Phys. Rev. B 84, 024106–024108 (2011)CrossRefADSGoogle Scholar
  39. 39.
    W. Voight, Uber die Beziehung Zwischen den Beiden Elastieitatconstanten Isotroper. Ann. Phys. (Leipzig) 38, 573 (1889)CrossRefADSGoogle Scholar
  40. 40.
    A. Reuss, Berechnung der Fliessgrenze von Mischkristallen aut Grund der Plastizitats-bedingung fur Einkristalle. Z. Angew. Math. Mech. 9, 49 (1929)CrossRefMATHGoogle Scholar
  41. 41.
    R. Hill, The elastic behaviour of a crystalline aggregate, in Proceedings of the Physical Society. Section A, vol 65, (1952), p. 349Google Scholar
  42. 42.
    S.F. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823–843 (1954)CrossRefGoogle Scholar
  43. 43.
    Z. Dang, M. Pang, Y. Mo, Y. Zhan, Theoretical prediction of structural, elastic and electronic properties of Si-doped TiCuGe intermetallics. Curr. Appl. Phys. 13, 549–555 (2013)CrossRefADSGoogle Scholar
  44. 44.
    E.S. Yousef, A. El-Adawy, N. El-KheshKhany, Effect of rare earth (Pr2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3 and Er2O3) on the acoustic properties of glass belonging to bismuth–borate system. Solid State Commun. 139, 108 (2006)CrossRefADSGoogle Scholar
  45. 45.
    D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345 (1992)CrossRefGoogle Scholar
  46. 46.
    K. Chen, L.R. Zhao, J. Rodgers, J.S. Tse, Alloying effects on elastic properties of TiN-based nitrides. J. Phys. D Appl. Phys. 36, 2725–2729 (2003)CrossRefADSGoogle Scholar
  47. 47.
    M. Jamal, S.J. Asadabadi, I. Ahmad, H.A.R. Aliabad, Elastic constants of cubic crystals. Comput. Mater. Sci. 95, 592–599 (2014)CrossRefGoogle Scholar
  48. 48.
  49. 49.
    Q. Fan, Q. Wei, H. Yan, M. Zhang, Z. Zhang, J. Zhang, D. Zhang, Elastic and electronic properties of Pbca-BN: first-principles calculations. Comput. Mater. Sci. 85, 80–87 (2014)CrossRefGoogle Scholar
  50. 50.
    O.L. Anderson, A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 24, 909–917 (1963)CrossRefADSGoogle Scholar
  51. 51.
    E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and Their Measurements, 3rd edn. (McGraw-Hill, New York, 1973)Google Scholar
  52. 52.
    M.E. Fine, L.D. Brown, H.L. Marcus, Elastic constants versus melting temperature in metals. Scr. Metall. 18, 951–956 (1984)CrossRefGoogle Scholar
  53. 53.
    D.R. Clarke, Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surf. Coat. Tech. 163, 67–74 (2003)CrossRefGoogle Scholar
  54. 54.
    Y.S. Touloukian, E.H. Buyco, Specific Heat: Nonmetallic Solids, Vol. 5 of Thermophysical Properties of Matter (IFI-Prenum, New York, 1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsSakarya UniversitySakaryaTurkey

Personalised recommendations