Applied Physics A

, 122:80 | Cite as

Bulk and surface properties of demixing liquid Al–Sn and Sn–Tl alloys

  • Y. A. OdusoteEmail author
  • A. I. Popoola
  • S. S. Oluyamo


The energetics of mixing in Al–Sn and Sn–Tl-segregating binary alloys has been explained through the study of surface properties (surface concentrations and surface tension) and various concentration-dependent thermodynamic (free energy of mixing, entropy of mixing and enthalpy of mixing) and transport (chemical diffusion) properties as well as the microscopic functions (concentration fluctuations in the long-wavelength limits and chemical short-range order parameter) using a statistical mechanical theory in conjunction with the self-association model (SAM). The theoretical property values obtained by the SAM were compared to the corresponding experimental values available in literature.


Liquid Alloy Equiatomic Composition Binary Liquid Alloy Unlike Atom Microscopic Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Abtew, G. Selvaduray, Lead-free solders in microelectronic. Mater. Sci. Eng. R27, 95–141 (2000)CrossRefGoogle Scholar
  2. 2.
    N. Moelans, K.C. Hari, Kumar P. Wollants, Thermodynamic optimization of the lead-free solder system Bi–In–Sn–Zn. J. Alloy. Compd. 360(1), 98 (2003)CrossRefGoogle Scholar
  3. 3.
    F. Gnecco, E. Ricci, S. Amore, D. Guiranno, G. Borzone, G. Zanicchi, R. Novakovic, Wetting behaviour of the lead free solder of Au–In–Sn and Bi–In–Sn alloys on copper substrate. Int. J. Adhes. Adhes. 27(5), 409–416 (2007)CrossRefGoogle Scholar
  4. 4.
    R.N. Singh, F. Sommer, Segregation and immiscibility in liquid binary alloys. Rep. Prog. Phys. 60, 57–150 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    L.C. Prasad, R.N. Singh, V.N. Singh, G.P. Singh, Correlation between bulk and surface properties of AgSn liquid alloys. J. Phys. Chem. B 102, 921–926 (1998)CrossRefGoogle Scholar
  6. 6.
    X.J. Liu, T. Yamaki, I. Ohnuma, R. Kainuma, K. Ishida, Thermodynamic calculations of phase equilibria, surface tension and viscosity in the In–Ag–X (X = Bi, Sb) system. Mater. Trans. 45(3), 637–645 (2004)CrossRefGoogle Scholar
  7. 7.
    J. Lee, W. Shimoda, T. Tanaka, Surface tension and its temperature coefficient of liquid Sn–X (X = Ag, Cu) alloys. Mater. Trans. 45(9), 2864–2870 (2004)CrossRefGoogle Scholar
  8. 8.
    B.C. Anusionwu, Thermodynamic and surface properties of Sb–Sn and In–Sn liquid alloys. Pramana J. Phys. 67(2), 319–330 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    C.A. Popescu, D. Taloi, Thermodynamic calculations in liquid Al–Sn alloys system. UPB Sci. Bull. Ser. B 69(1), 78–83 (2007)Google Scholar
  10. 10.
    R. Novakovic, D. Giuranno, E. Ricci, T. Lanata, Surface and transport properties of In–Sn liquid alloys. Surf. Sci. 602(11), 1957–1963 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    O.E. Awe, Y.A. Odusote, L.A. Hussain, O. Akinlade, Energetics of mixing in Bi–Pb and Sb–Sn liquid alloys. Phys. B 403, 2732–2739 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    S. Amore, E. Ricci, T. Lanata, R. Novakovic, Surface tension and wetting behaviour of Cu–Sn molten alloys. J. Alloy. Compd. 452, 161–166 (2008)CrossRefGoogle Scholar
  13. 13.
    L.C. Prasad, A. Mikula, Concentration fluctuations and interfacial adhesion at the solid–liquid interface between \(\text{ Al }_{2}\text{ O }_{3}\) and Al–Sn liquid alloys. High Temp. Mater. Process. 19(1), 61–69 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    F. Habashi, in Alloys: Preparation, Properties, Applications (Wiley-VCH, Weinheim, 2008), pp. 295–296. ISBN: 978-3-527-61192-8Google Scholar
  15. 15.
    K.-L. Lin, L.-H. Wen, T.-P. Liu, The microstructures of the Sn–Zn–Al solder alloys. J. Electron. Mater. 27, 97–105 (1998)Google Scholar
  16. 16.
    S.C. Cheng, K.L. Lin, The thermal property of lead-free Sn–8.55Zn–1Ag–XAl solder alloys and their wetting interaction with Cu. J. Electron. Mater. 31(9), 940–945 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Sonvane, P.B. Thakor, A.R. Jani, Atomic transport and surface properties of some simple liquid metals using one component plasma system. J. Theor. Appl. Phys. 6, 43 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    S.D. Korkmaz, S. Korkmaz, Investigation of surface properties of liquid transition metals: surface tension and surface entropy. Appl. Surf. Sci. 257, 261 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    B. Predel, Sn–Tl (Tin–Thallium), Landolt–Börnstein–Group IV Physical Chemistry, vol. 5 J (Springer, Berlin, Heidelberg, New York, 1998), pp. 1–3Google Scholar
  20. 20.
    L. Goumiri, J.C. Joud, P. Desre, J.M. Hicter, Tensions superficielles d’alliages liquides binaires présentant un caractère dimmiscibilité: Al–Pb, Al–Bi, Al–Sn et Zn–Bi. Surf. Sci. 83(2), 471–486 (1979)ADSCrossRefGoogle Scholar
  21. 21.
    NYu. Taranets, V.I. Nizhenko, V.V. Poluyanskaya, YuV Naidich, Ge–Al and Sn–Al alloys capillary properties in contact with aluminium nitride. Acta Mater. 50, 5147 (2002)CrossRefGoogle Scholar
  22. 22.
    B.J. Keene, The Surface Tension of Tin and Its Alloys with Particular Reference to Solders (National Physical Laboratory, Teddington, 1993)Google Scholar
  23. 23.
    B.J. Keene, Review of data for surface tension of pure metals. Int. Mater. Rev. 38(4), 157 (1993)CrossRefGoogle Scholar
  24. 24.
    R. Novakovic, M.L. Muolo, A. Passerone, Bulk and surface properties of liquid X–Zr (X = Ag, Cu) compound forming alloys. Surf. Sci. 549, 281–293 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    L.C. Prasad, R.N. Singh, G.P. Singh, The role of size effects on surface properties. Phys. Chem. Liq. 27(3), 179 (1994)CrossRefGoogle Scholar
  26. 26.
    J.G. Kirkwood, F.P. Buff, The statistical mechanical theory of surface tension. J. Chem. Phys. 17, 338 (1949)ADSCrossRefGoogle Scholar
  27. 27.
    N.D. Lang, W. Khon, Theory of metal surfaces: charge density and surface energy. Phys. Rev. B 1, 4555 (1970)ADSCrossRefGoogle Scholar
  28. 28.
    L. Pauling, Nature of the Chemical Bonding (Cornell University Press, Ithaca, 1960)Google Scholar
  29. 29.
    T. Iida, R.I.L. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, Oxford, 1993)Google Scholar
  30. 30.
    A.B. Bhatia, W.H. Hargrove, Concentration fluctuations and thermodynamic properties of some compound forming binary molten systems. Phys. Rev. B 10, 3186 (1974)ADSCrossRefGoogle Scholar
  31. 31.
    R.N. Singh, N.H. March, in Intermetallic Compounds, Principles and Practice, vol. 1, ed. by J.H. Westbrook, R.L. Fleischer (Wiley, New York, 1995), p. 661Google Scholar
  32. 32.
    R.N. Singh, F. Sommer, A simple model for demixing binary alloys. Z. Met. 83(7), 533–540 (1992)Google Scholar
  33. 33.
    J.M. Cowley, An approximate theory of order in alloys. Phys. Rev. 77, 669 (1950)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    W. Hume-Rothery, G.V. Raynor, The Structure of Metals and Alloys (The Institute of Metals, London, 1954)zbMATHGoogle Scholar
  35. 35.
    Y.A. Odusote, L.A. Hussain, O.E. Awe, Bulk and dynamic properties in Al–Zn and Bi–In liquid alloys using a theoretical model. J. Non-Cryst. Solids 353, 1167 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    O.E. Awe, Y.A. Odusote, L.A. Hussain, O. Akinlade, Temperature dependence of thermodynamic properties of Si–Ti binary liquid alloys. Thermochim. Acta 519, 1–5 (2011)CrossRefGoogle Scholar
  37. 37.
    E.A. Guggehheim, Mixtures (Oxford University Press, London, 1952)Google Scholar
  38. 38.
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, K.K. Kelly, Selected Values of the Thermodynamic Properties of Binary Alloys (American Society of Metals, Metals Park, Ohio, 1973)Google Scholar
  39. 39.
    Smithell’s Metals Reference Book, 8th edn., ed. by W.F. Gale, T.C. Totemeir (Elsevier Butterworth-Heinemann, Oxford, 2004)Google Scholar
  40. 40.
    T. Tanaka, K. Hack, S. Hara, Use of thermodynamic data to determine surface tension and viscosity of metallic alloys. MRS Bull. 24(4), 45 (1999)Google Scholar
  41. 41.
    R. Novakovic, T. Tanaka, M.L. Muolo, J. Lee, A. Passerone, Bulk and surface properties of liquid Ag–X (X = Ti, Hf) compound forming alloys. Surf. Sci. 591, 56–69 (2005)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Y. A. Odusote
    • 1
    Email author
  • A. I. Popoola
    • 1
  • S. S. Oluyamo
    • 1
  1. 1.Condensed Matter Research Group, Department of PhysicsThe Federal University of TechnologyAkureNigeria

Personalised recommendations