Skip to main content
Log in

Internal quantum efficiency improvement in polysilicon solar cells with porous silicon layer on the rear side

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present paper reports on a simulation study carried out to determine and optimize the effect of porous silicon (PS) layer at the rear side on the performance of thin polysilicon solar cells. It analytically solved the complete set of equations necessary to determine the contribution that this material has with regard to the internal quantum efficiency (IQE) of the cell when acting as a backside reflector. The contribution of the different regions of the cell, the increase in IQE, and the effects of high porosity and number of PS layers were derived and compared to conventional BSF solar cells. The findings revealed that the IQE of the solar cell with a PS layer at the backside was higher than that of conventional BSF, particularly in terms of medium and long wavelength range λ > 0.5 μm. This improvement was more significant with thin cells, large grain widths, and well-passivated grain boundaries. Furthermore, while the use of the PS layer had a significant effect on the contribution of the base, it exerted no effect on the contribution of the emitter and depletion regions. Overall, the maximum level of IQE improvement was recorded with three double-porosity structures in the PS layer, reaching a high porosity value of about 80 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

q :

Electron charge

\(L_{n} \left( {L_{n}^{*} } \right)\) :

Diffusion length of minority carriers in the base (PS) region

\(D_{n} \left( {D_{n}^{*} } \right)\) :

Diffusion constant of minority carriers in the base (PS) region

N a (N + a ):

Doping level in the base (back) region

N d :

Doping level in the emitter region

\(\alpha (\lambda ) (\alpha^{*} (\lambda ))\) :

Absorption coefficient in the polysilicon (PS) at a wavelength λ

ϕ(λ):

Incident photon flux

\(R(\lambda ) (R_{d} (\lambda ))\) :

Reflection coefficient at the front surface (back region)

W b(W e):

Base (emitter) thickness

\(W_{{P^{ + } }}\) :

PS layer thickness

W 1 :

Emitter and space charge thickness

W 2 :

Total cell thickness without PS layer

H :

Total cell thickness with PS layer

d :

Grain width

\(S_{n}^{ + } (S_{p} )\) :

Recombination velocity at the back (front) contact

\(\Delta n\) :

Excess electron density in the base region

J refph :

Reflected photocurrent density by the back contact

J PSph :

Photocurrent density contributed by the PS layer

\({\text{IQE}}^{\text{E}} ({\text{IQE}}^{\text{D}} )\) :

Contribution of the emitter (depletion region) to the IQE

IQEB :

Contribution of the base to the IQE

\({\text{IQE}}^{\text{ref}} ({\text{IQE}}^{\text{PS}} )\) :

Contribution of the reflected light by the high porous layer (absorbed light in the low porous layer) to the IQE

References

  1. P. Campbell, M.A. Green, Light trapping properties of pyramidally textured surfaces. J. Appl. Phys. 62, 243–249 (1987)

    Article  ADS  Google Scholar 

  2. M.Y. Ghannam, A.A. Abouelsaood, R.P. Mertens, Refined modeling of optical confinement in thin silicon layers with a Lambertian back reflector for solar cell applications. J. Appl. Phys. 84, 496–502 (1998)

    Article  ADS  Google Scholar 

  3. R. Brendel, Thin-film crystalline silicon mini-modules using porous Si for layer transfer. Sol. Energy 77, 969–982 (2004)

    Article  ADS  Google Scholar 

  4. R.B. Bergmann, C. Berge, T.J. Rinke, J. Schmidt, J.H. Werner, Advances in monocrystalline Si thin film solar cells by layer transfer. Sol. Energy Mater. Sol. Cells 74, 213–218 (2002)

    Article  Google Scholar 

  5. R. Bilyalov, C.S. Solanki, J. Poortmans, O. Richard, H. Bender, M. Kummer, H. von Känel, Crystalline silicon thin films with porous Si backside reflector. Thin Solid Films 403–404, 170–174 (2002)

    Article  Google Scholar 

  6. A. Trabelsi, Internal quantum efficiency improvement of polysilicon solar cells with porous silicon emitter. Renewable Energy 50, 441–448 (2013)

    Article  Google Scholar 

  7. V. Torres-Costa, J. Salonen, V.-P. Lehto, R.J. Martin-Palma, J.M. Martinez-Duart, Passivation of nanostructured silicon optical devices by thermal carbonization. Microporous Mesoporous Mater. 111, 636–638 (2008)

    Article  Google Scholar 

  8. C. de Melo, S. Larramendi, V. Torres-Costa, J. Santoyo-Salazar, M. Behar, J. Ferraz Dias, O. de Melo, Enhanced ZnTe infiltration in porous silicon by isothermal close space sublimation. Microporous Mesoporous Mater. 188, 93–98 (2014)

    Article  Google Scholar 

  9. H. Nouri, W. Dimassi, M. Bouaicha, M. Hajji, M.F. Boujmil, M. Saâdoun, B. Bessaïs, H. Ezzaouia, R. Bennaceur, Impacts of spatially reduced grain boundary recombination regions on multicrystalline silicon solar cell performance. Thin Solid Films 451–452, 312–315 (2004)

    Article  Google Scholar 

  10. R.B. Bergmann, T.J. Rinke, R.M. Hausner, M. Grauvogl, M. Vetter, J.H. Werner, Thin film solar cells on glass by transfer of monocrystalline Si films. Int. J. Photoenergy 1, 89–93 (1999)

    Article  Google Scholar 

  11. M. Krichen, A. Zouari, A. Ben Arab, A simple analytical model of thin films crystalline silicon solar cell with quasi-monocrystalline porous silicon at the backside. Microelectron. J. 40, 120–125 (2009)

    Article  Google Scholar 

  12. M. Banerjee, S.K. Dutta, U. Gangopadhyay, D. Majumdar, H. Saha, Modeling and simulation of layer-transferred thin silicon solar cell with quasi monocrystalline porous silicon as active layer. Solid State Electron. 49, 1282–1291 (2005)

    Article  ADS  Google Scholar 

  13. F. Duerinckx, I. Kuzma-Filipek, K. Van Nieuwenhuysen, G. Beaucarne, J. Poortmans, Reorganized porous silicon Bragg reflectors for thin-film silicon solar cells. IEEE Electron Device Lett. 27, 837–839 (2006)

    Article  ADS  Google Scholar 

  14. I. Kuzma-Filipek, F. Duerinckx, E. Van Kerschaver, K. Van Nieuwenhuysen, G. Beaucarne, J. Poortmans, Chirped porous silicon reflectors for thin-film epitaxial silicon solar cells. J. Appl. Phys. 104, 073529-1-8 (2008)

    Article  ADS  Google Scholar 

  15. D. Majumdar, S. Chatterjee, M. Dhar, S.K. Dutta, H. Saha, Light trapping in layer-transferred quasi-monocrystalline porous silicon solar cell. Sol. Energy Mater. Sol. Cells 77, 51–64 (2003)

    Article  Google Scholar 

  16. B. Ba, M. Kane, A. Fickou, G. Sissoko, Excess minority carrier densities and transient short circuit currents in polycrystalline silicon solar cells. Sol. Energy Mater. Sol. Cells 31, 33–49 (1993)

    Article  Google Scholar 

  17. W.J. Yang, Z.Q. Ma, X. Tang, C.B. Feng, W.G. Zhao, P.P. Shi, Internal quantum efficiency for solar cells. Sol. Energy 82, 106–110 (2008)

    Article  ADS  Google Scholar 

  18. J.P. McKelvey, Solid State and Semiconductor Physics (Harper and Row, New York, 1996)

    Google Scholar 

  19. S. Strehlke, S. Bastide, J. Guillet, C. Levy-Clement, Design of porous silicon antireflection coatings for silicon solar cells. Mater. Sci. Eng., B 69–70, 81–86 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to Mr. Anouar Smaoui from the English Section at the Sfax Faculty of Science for carefully proofreading the manuscript of the current paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessalem Trabelsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trabelsi, A., Zouari, A. Internal quantum efficiency improvement in polysilicon solar cells with porous silicon layer on the rear side. Appl. Phys. A 122, 36 (2016). https://doi.org/10.1007/s00339-015-9567-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9567-4

Keywords

Navigation