Skip to main content
Log in

The effect of vacancies on melting properties of tantalum via molecular dynamics simulations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are performed to investigate the melting properties of tantalum (Ta) with different consistencies of vacancies in the samples. We note that the presence of vacancies can reduce the melting points more or less. From the evolution processes of volume, radial distribution function, and the vacancy numbers with temperature, we analyzed the role of vacancies during melting. Combined with spatial correlation of the defects, we got the knowledge that presented vacancies in sample may induce vacancy aggregation and local solid-state disordering before melting. Pressure, to some extent, can accelerate this process, but constrain the produce of vacancies in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Errandonea, B. Schwager, R. Ditz, C. Gessmann, R. Boehler, M. Ross, Phys. Rev. B 63, 132104 (2001)

    Article  ADS  Google Scholar 

  2. D. Errandonea, M. Somayazulu, D. Hausermann, H.K. Mao, J. Phys. Condens. Matter 15, 7635 (2003)

    Article  ADS  Google Scholar 

  3. D. Errandonea, Phys. B 357, 356 (2005)

    Article  ADS  Google Scholar 

  4. D. Errandonea, J. Phys. Chem. Solids 67, 2017 (2006)

    Article  ADS  Google Scholar 

  5. D. Errandonea, R. Boehler, M. Ross, Phys. Rev. B 65, 012108 (2001)

    Article  ADS  Google Scholar 

  6. R. Boehler, D. Santamaría-Pérez, D. Errandonea, M. Mezouar, J. Phys. Conf. Ser. 121, 022018 (2008)

    Article  ADS  Google Scholar 

  7. A. Dewaele, M. Mezouar, N. Guignot, P. Loubeyre, Phys. Rev. Lett. 104, 255701 (2010)

    Article  ADS  Google Scholar 

  8. J.M. Brown, J.W. Shaner, in Shock Waves in Condensed Matter-1983, ed. by J.A. Asay, R.A. Graham, G.K. Straub (Elsevier, North-Holland, Amsterdam, 1984)

    Google Scholar 

  9. C.J. Wu, P. Söderlind, J.N. Glosli, J.E. Klepeis, Nat. Mater. 8, 223 (2009)

    Article  ADS  Google Scholar 

  10. Y. Wang, J. Shi, C. Ji, Appl. Phys. A 115, 1263 (2014)

    Article  ADS  Google Scholar 

  11. S. Taioli, C. Cazorla, M.J. Gillan, D. Alfè, Phys. Rev. B 75, 214103 (2007)

    Article  ADS  Google Scholar 

  12. S. Luo, D.C. Swift, Phys. B 388, 139 (2007)

    Article  ADS  Google Scholar 

  13. Z.L. Liu, L.C. Cai, X.R. Chen, F.Q. Jing, Phys. Rev. B 77, 024103 (2008)

    Article  ADS  Google Scholar 

  14. L. Li, M. Han, Appl. Phys. A 119, 1101 (2015)

    Article  ADS  Google Scholar 

  15. M. Ross, D. Errandonea, R. Boehler, Phys. Rev. B 76, 184118 (2007)

    Article  ADS  Google Scholar 

  16. L. Burakovsky, S.P. Chen, D.L. Preston, A.B. Belonoshko, A. Rosengren, A.S. Mikhaylushkin, S.I. Simak, J.A. Moriarty, Phys. Rev. Lett. 104, 255702 (2010)

    Article  ADS  Google Scholar 

  17. A.B. Belonoshko, T. Lukinov, L. Burakovsky, D.L. Preston, A. Rosengren, Eur. Phys. J. Spec. Top. 216, 199 (2013)

    Article  Google Scholar 

  18. T. Lukinov, A. Rosengren, A.B. Belonoshko, Comput. Mater. Sci. 79, 95 (2013)

    Article  Google Scholar 

  19. S.N. Luo, L. Zheng, O. Tschauner, J. Phys. Condens. Matter 18, 659 (2006)

    Article  ADS  Google Scholar 

  20. H. Eyring, M.S. John, Significant Liquid Structures (Wiley, New York, 1969)

    Google Scholar 

  21. J. Frenkel, Introduction to the Theory of Metals (PWN, Warsaw, 1955)

    Google Scholar 

  22. T. Gorecki, Z. Metallk 65, 426 (1974)

    Google Scholar 

  23. T. Gorecki, Z. Metallk 67, 269 (1976)

    Google Scholar 

  24. L.W. Wang, L. Zhang, K. Lu, Philos. Mag. Lett. 85, 213 (2005)

    Article  ADS  Google Scholar 

  25. Q. An, L. Zheng, S.N. Luo, J. Non-Cryst. Solids 352, 3320 (2006)

    Article  ADS  Google Scholar 

  26. Y. Zhang, E.J. Maginn, J. Chem. Phys. 136, 144116 (2012)

    Article  ADS  Google Scholar 

  27. L.G. Wang, A. van de Walle, Phys. Chem. Chem. Phys. 14, 1529 (2012)

    Article  Google Scholar 

  28. R.A. Konchakov, V.A. Khonik, Phys. Solid State 56, 1368 (2014)

    Article  ADS  Google Scholar 

  29. Q.S. Mei, K. Lu, Philos. Mag. Lett. 88, 203 (2008)

    Article  ADS  Google Scholar 

  30. R. Ravelo, Q. An, T.C. Germann, B.L. Holian, AIP Conf. Proc. 1426, 1263 (2012)

    Article  ADS  Google Scholar 

  31. R. Ravelo, T.C. Germann, O. Guerrero, Q. An, B.L. Holian, Phys. Rev. B 88, 134101 (2013)

    Article  ADS  Google Scholar 

  32. R.A. Johnson, D.J. Oh, J. Mater. Res. 4, 1195 (1989)

    Article  ADS  Google Scholar 

  33. M.W. Finnis, J.E. Sinclair, Philos. Mag. A 50, 45 (1984)

    Article  ADS  Google Scholar 

  34. G.J. Ackland, R. Thetford, Philos. Mag. A 56, 15 (1987)

    Article  ADS  Google Scholar 

  35. X.D. Dai, Y. Kong, J.H. Li, B.X. Liu, J. Phys. Condens. Matter 18, 4527 (2006)

    Article  ADS  Google Scholar 

  36. S. Taioli, C. Cazorla, M.J. Gillan, D. Alfe, Phys. Rev. B 75, 214103 (2007)

    Article  ADS  Google Scholar 

  37. S. Plimpton, J. Comput. Phys. 117, 1 (1995); also see: http://lammps.sandia.gov

  38. S.N. Luo, T.J. Ahrens, T. Cagin, A. Strachan, W.A. Goddard III, D.C. Swift, Phys. Rev. B 68, 134206 (2003)

    Article  ADS  Google Scholar 

  39. A.B. Belonoshko, Geochim. Cosmochim. Acta 58, 4039 (1994)

    Article  ADS  Google Scholar 

  40. J.Q. Broughton, X.P. Li, Phys. Rev. B 35, 9120 (1987)

    Article  ADS  Google Scholar 

  41. A.B. Belonoshko, N.V. Skorodumova, A. Rosengren, B. Johansson, Phys. Rev. B 73, 012201 (2006)

    Article  ADS  Google Scholar 

  42. A.B. Belonoshko, S. Davis, N.V. Skorodumova, P.H. Lundow, A. Rosengren, B. Johansson, Phys. Rev. B 76, 064121 (2007)

    Article  ADS  Google Scholar 

  43. C. Kittel, Introduction to Solid State Physics, 7th edn. (Wiley, New York, 1996)

    Google Scholar 

  44. D.R. Lide, Handbook of Chemistry and Physics 81st edn (CRC Press, Boca Raton, FL, 2000–2001)

Download references

Acknowledgments

The authors would like to thank the support by the NSAF Joint Fund Jointly set up by the National Natural Science Foundation of China and the Chinese Academy of Engineering Physics under Grant Nos. U1230201 and U1430117, the National Natural Science Foundation of China under Grant Nos. 11504280 and 51502217, the Doctoral Scientific Research Foundation of Wuhan University of Science and Technology under Grant Nos. 080178 and 080179.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C. M. Liu or Y. Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C.M., Xu, C., Cheng, Y. et al. The effect of vacancies on melting properties of tantalum via molecular dynamics simulations. Appl. Phys. A 122, 22 (2016). https://doi.org/10.1007/s00339-015-9550-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9550-0

Keywords

Navigation