Skip to main content
Log in

Laser-produced Sm1−x Nd x NiO3 plasma dynamic through Langmuir probe and ICCD imaging combined analysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The dynamics of laser-produced plasma of Sm1−x Nd x NiO3 is studied over oxygen pressure ranging from vacuum up to 2 mbar via Langmuir probe, and intensified charge-coupled device-imaging techniques. The analysis of the oxygen pressure dependence of the ion yield points out to four different regimes. More accurately, the specific ionic current shows a first drop at about 2 × 10−2 mbar corresponding to the appearance of two peaks in the profile of the ionic signal. Likewise, this pressure marks the early stage of the plume splitting into two prominent components as observed by the ICCD imaging. Below 2 × 10−2 mbar, the dynamic of the plume is directive (1D), while a quasi-stable behavior on the ionic current signal is observed. In the 0.2- to 0.5-mbar region, a quasi-stationary regime is obtained. More accurately, both the ionic yield and the plume stopping distance vary very slowly in such pressures range. Above 0.5 mbar, the ionic yield is altered again corresponding to the appearance of the diffusion regime. At a pressure of 1.5 mbar we observe a second appearance of an ionic signal peak. A correlation between the results obtained by Langmuir probe and ICCD imaging is made, presented, and discussed within this contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D.B. Chrisey, G.K. Hubler, Pulsed Laser Deposition of Thin Films (Wiley, Hoboken, 1994)

    Google Scholar 

  2. I. Tadadjeu Sokeng, B.D. Ngom, F. Cummings, L. Kotsedi, M. Msimanga, M. Maaza, R.R. Van Zyl, Proton-induced nanorod melting in a coating obtained from the pulsed laser ablation of W2B5/B4C. Nucl. Instrum. Methods Phys. Res. B 344, 70–75 (2015)

    Article  ADS  Google Scholar 

  3. M. Maaza, B.D. Ngom, M. Achouri, K.E. Manikandan, Functional nanostructured oxides. doi:10.1016/j.vacuum.2014.12.023

  4. S. Khamlich, B.D. Ngom, C.K. Kotsedi, K. Bouziane, C. Manikandan, M. Maaza, Morphological and crystallographic properties of rare earth oxides coatings deposited by double dual beam-Pld. Surf. Rev. Lett. 21, 01 (2014)

    Article  Google Scholar 

  5. B.D. Ngom, M. Chaker, I.G. Madiba, S. Khamlich, N. Manyala, O. Nemraoui, R. Madjoe, A.C. Beye, M. Maaza, Competitive growth texture of pulse laser deposited VO2 nanostructures on glass substrate. Acta Mater. 65, 32–41 (2014)

    Article  Google Scholar 

  6. S. Amoruso, R. Bruzzese, N. Spinelli, R. Velotta, M. Vitiello, X. Wang, G. Ausanio, V. Iannotti, L. Lanotte, Generation of silicon nanoparticles via femtosecond laser ablation in vacuum. Appl. Phys. Lett. 84, 4502 (2004)

    Article  ADS  Google Scholar 

  7. E. Woryna, P. Parys, J. Wołowski, W. Mroz, Corpuscular diagnostics and processing methods applied in investigations of laser-produced plasma as a source of highly ionized ions. Laser Part. Beams 14, 293 (1996)

    Article  ADS  Google Scholar 

  8. P. Yeates, J.T. Costello, E.T. Kennedy, The DCU laser ion source. Rev. Sci. Instrum. 81, 043305 (2010)

    Article  ADS  Google Scholar 

  9. S.S. Harilal, T. Sizyuk, A. Hassanein, D. Campos, P. Hough, V. Sizyuk, The effect of excitation wavelength on dynamics of laser-produced tin plasma. J. Appl. Phys. 109, 063306 (2011)

    Article  ADS  Google Scholar 

  10. D.A. Cremers, L.J. Radziemski, Handbook of Laser-Induced-Breakdown Spectroscopy (Wiley, Hoboken, 2006)

    Book  Google Scholar 

  11. S.S. Harilal, G.V. Miloshevsky, P.K. Diwakar, N.L. LaHaye, A. Hassanein, Experimental and computational study of complex shockwave dynamics in laser ablation plumes in argon atmosphere. Phys. Plasmas 19, 083504 (2012)

    Article  ADS  Google Scholar 

  12. J.J. Gonzalez, A. Fernandez, D. Oropeza, X. Mao, R.E. Russo, Femtosecond laser ablation: experimental study of the repetition rate influence on inductively coupled plasma mass spectrometry performance. Spectrochim. Acta Part B 63, 277 (2008)

    Article  ADS  Google Scholar 

  13. S.S. Harilal, G.V. Miloshevsky, T. Sizyuk, A. Hassanein, Effects of excitation laser wavelength on Ly-α and He-α line emission from nitrogen plasmas. Phys. Plasmas 20, 013105 (2013)

    Article  ADS  Google Scholar 

  14. A.E. Hussein, P.K. Diwakar, S.S. Harilal, A. Hassanein, The role of laser wavelength on plasma generation and expansion of ablation plumes in air. J. Appl. Phys. 113, 143305 (2013)

    Article  ADS  Google Scholar 

  15. S. Mahmood, R.S. Rawat, Y. Wang, S. Lee, M. Zakaullah, T.L. Tan, S.V. Springham, P. Lee, Effects of laser energy fluence on the onset and growth of the Rayleigh–Taylor instabilities and its influence on the topography of the Fe thin film grown in pulsed laser deposition facility. Phys. Plasmas 19, 103504 (2012)

    Article  ADS  Google Scholar 

  16. F. Rezaei, S.H. Tavassoli, Developing the model of laser ablation by considering the interplay between emission and expansion of aluminum plasma. Phys. Plasmas 20, 013301 (2013)

    Article  ADS  Google Scholar 

  17. N. Farid, H. Wang, C. Li, X. Wu, H.Y. Oderji, H. Ding, G.-N. Luo, Effect of background gases at reduced pressures on the laser treated surface morphology, spectral emission and characteristics parameters of laser produced Mo plasmas. J. Nucl. Mater. 438, 183 (2013)

    Article  ADS  Google Scholar 

  18. S. Mehrabian, M. Aghaei, S.H. Tavassoli, Effect of background gas pressure and laser pulse intensity on laser induced plasma radiation of copper samples. Phys. Plasmas 17, 043301 (2010)

    Article  ADS  Google Scholar 

  19. B.D. Ngom, S. Lafane, A. Dioum, N. Manyala, S. Abdelli-Messaci, R.T. Kerdja, R. Madjoe, R. Nemutudi, M. Maaza, A.C. Beye, Influence of plasma dynamics on the growth of Sm0.55Nd0.45NiO3 solid solution during pulsed laser deposition. J. Phys. Chem. Solids 72, 1218–1224 (2011)

    Article  ADS  Google Scholar 

  20. S. Lafane, T. Kerdja, S. Abdelli-Messaci, S. Malek, M. Maaza, Laser-induced plasma study by fast imaging for Sm1−x Nd x NiO3, thin film deposition. Appl. Phys. A 98, 375–383 (2010)

    Article  ADS  Google Scholar 

  21. S. Lafane, T. Kerdja, B.D. Ngom, S. Abdelli-Messaci, S. Malek, Plume study by ion probe and morphology control during pulsed laser deposition of Sm1−x Nd x NiO3. Appl. Surf. Sci. 269, 120–124 (2013)

    Article  ADS  Google Scholar 

  22. B. Geohegan, A.A. Puretzky, Laser ablation plume thermalization dynamics in background gases: combined imaging, optical absorption and emission spectroscopy, and ion probe measurements. Appl. Surf. Sci. 96, 131 (1996)

    Article  ADS  Google Scholar 

  23. R.F. Wood, K.R. Chen, J.N. Leboeuf, A.A. Puretzky, D.B. Geohegan, Dynamics of plume propagation and splitting during pulsed-laser ablation. Phys. Rev. Lett. 79, 1571 (1997)

    Article  ADS  Google Scholar 

  24. S. Amoruso, J. Schou, J.G. Lunney, Multiple-scattering effects in laser ablation plume propagation in gases. Europhys. Lett. 76, 436 (2006)

    Article  ADS  Google Scholar 

  25. S. Amoruso, B. Toftmann, J. Schou, R. Velotta, X. Wang, Diagnostics of laser ablated plasma plumes. Thin Solid Films 453, 562 (2004)

    Article  ADS  Google Scholar 

  26. S. Amoruso, B. Toftmann, J. Schou, Thermalization of a UV laser ablation plume in a background gas: from a directed to a diffusion like flow. Phys. Rev. E 69, 056403 (2004)

    Article  ADS  Google Scholar 

  27. S. Amoruso, J. Schou, J.G. Lunney, Influence of the atomic mass of the background gas on laser ablation plume propagation. Appl. Phys. A 92, 907 (2008)

    Article  ADS  Google Scholar 

  28. J. Gonzalo, C.N. Afonso, J.M. Ballesteros, A. Grosman, C. Ortega, Expansion dynamics of the plasma produced by laser ablation of BaTiO3 in a gas environment. J. Appl. Phys. 82(6), 3129 (1997)

    Article  ADS  Google Scholar 

  29. S. Amoruso, R. Bruzzese, X. Wang, G. O’Connell, J.G. Lunney, Multidiagnostic analysis of ultrafast laser ablation of metals with pulse pair irradiation. J. Appl. Phys. 108, 113302 (2010)

    Article  ADS  Google Scholar 

  30. S. Amoruso, R. Bruzzese, R. Velotta, N. Spinelli, M. Vitiello, X. Wang, Characterization of LaMnO3 laser ablation in oxygen by ion probe and optical emission spectroscopy. Appl. Surf. Sci. 248, 45–49 (2005)

    Article  ADS  Google Scholar 

  31. R.F. Wood, J.N. Leboeuf, D.B. Geohegan, A.A. Puretzky, K.R. Chen, Dynamics of plume propagation and splitting during pulsed-laser ablation of Si in He and Ar. Phys. Rev. B 58, 1533 (1998)

    Article  ADS  Google Scholar 

  32. T.N. Hansen, J. Schou, J.G. Lunney, Ion time-of-flight study of laser ablation of silver in low pressure gases. Appl. Surf. Sci. 184, 138 (1999)

    Google Scholar 

  33. B. Thestrup, B. Toftmann, J. Schou, B. Doggett, J.G. Lunney, A comparison of the laser plume from Cu and YBCO studied with ion probes. Appl. Surf. Sci. 33, 208 (2003)

    Google Scholar 

  34. S. Amoruso, B. Toftmann, J. Schou, Broadening and attenuation of UV laser ablation plumes in background gases. Appl. Surf. Sci. 248, 323 (2005)

    Article  ADS  Google Scholar 

  35. S. Abdelli-Messaci, T. Kerdja, S. Lafane, S. Malek, Fast imaging of laser-induced plasma emission from a Zno target. Spectrochim. Acta Part B 64, 968–973 (2009)

    Article  ADS  Google Scholar 

  36. K.K. Anoop, M.P. Polek, R. Bruzzese, S. Amoruso, S.S. Harilal, Multidiagnostic analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range. J. Appl. Phys. 117, 083108 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The author is grateful to the various colleagues who facilitated this research work with a specific recognition to the outstanding contributions of Late Prof. T. Kerdja from the Centre de Développement des Technologies Avancées, Baba Hassen-Algeria.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. D. Ngom or S. Lafane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ngom, B.D., Lafane, S., Abdelli-Messaci, S. et al. Laser-produced Sm1−x Nd x NiO3 plasma dynamic through Langmuir probe and ICCD imaging combined analysis. Appl. Phys. A 122, 27 (2016). https://doi.org/10.1007/s00339-015-9548-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9548-7

Keywords

Navigation