Skip to main content
Log in

Effect of cerium substitution on microstructure and Faraday rotation of Ce x Y3−x Fe5O12 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, cerium-substituted yttrium iron garnet (Ce x Y3−x Fe5O12, x = 0.25–1) targets were fabricated by conventional ceramic method at different temperatures, and their crystal structures were investigated by X-ray diffraction method. The results showed that the minimum calcining temperature required to get single-phase targets depends on x value and decreased by increasing x value. Then, thin films of the targets were deposited on GGG (444) single-crystal substrates by pulsed laser deposition technique. Based on the previous studies, preferred (444) oriented Ce x Y3−x Fe5O12 thin films were fabricated under optimum conditions. Faraday rotation of the thin films was measured at 635 nm wavelength, and the results showed that Faraday rotation and sensitivity constant increased by increasing x value. Scanning electron microscope images showed that by increasing x value, cracks on the thin films’ surface increased. Atomic force microscopy images showed that the films have smooth surfaces and the surface roughness decreased by increasing the x value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Zhao, J. Zhou, B. Li, Z. Gui, L. Li, Microstructure and densification mechanism of low temperature sintering Bi-substituted yttrium iron garnet. J. Electroceram. 21, 802–804 (2008). doi:10.1007/s10832-007-9300-6

    Article  Google Scholar 

  2. M. Huang, S.Y. Zhang, Growth and characterization of cerium-substituted yttrium iron garnet single crystals for magneto-optical applications. Appl. Phys. A Mater. Sci. Process. 74, 177–180 (2002). doi:10.1007/s003390100883

    Article  ADS  Google Scholar 

  3. O. Yukihiro, T. Daisuke, K. Kouya, Y. Hideki, Design of polarization rotators in TE–TM mode conversion optical isolator with Ce:YIG guiding layer. Jpn. J. Appl. Phys. 54, 092202 (2015)

    Article  Google Scholar 

  4. M.C. Onbasli, T. Goto, X. Sun, N. Huynh, C.A. Ross, Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates. Opt. Express 22, 25183–25192 (2014). doi:10.1364/OE.22.025183

    Article  ADS  Google Scholar 

  5. S.M. Shahrokhvand, A.S.H. Rozatian, M. Mozaffari, S.M. Hamidi, M.M. Tehranchi, Preparation and investigation of Ce:YIG thin films with a high magneto-optical figure of merit. J. Phys. D Appl. Phys. 45, 235001 (2012)

    Article  ADS  Google Scholar 

  6. H. Takeuchi et al., Faraday rotation and optical absorption of a single crystal of bismuth-substituted gadolinium iron garnet. J. Appl. Phys. 44, 4789–4790 (1973)

    Article  ADS  Google Scholar 

  7. H. Xu, H. Yang, Magnetic properties of Y3Fe5O12 nanoparticles doped Bi and Ce ions. Mater. Manuf. Processes 23, 1–4 (2008)

    Article  Google Scholar 

  8. A.D. Block, P. Dulal, B.J.H. Stadler, N.C.A. Seaton, Growth parameters of fully crystallized YIG, Bi:YIG, and Ce:YIG films with high faraday rotations. IEEE Photonics J 6, 1–8 (2014). doi:10.1109/JPHOT.2013.2293610

    Article  Google Scholar 

  9. H. Xu, H. Yang, Magnetic properties of YIG doped with cerium and gadolinium ions. J. Mater. Sci. Mater. Electron. 19, 589–593 (2008). doi:10.1007/s10854-007-9394-2

    Article  Google Scholar 

  10. T. Uno, S. Noge, Growth of magneto-optic Ce:YIG thin films on amorphous silica substrates. J. Eur. Ceram. Soc. 21, 1957–1960 (2001)

    Article  Google Scholar 

  11. N.B. Ibrahim, C. Edwards, S.B. Palmer, Pulsed laser ablation deposition of yttrium iron garnet and cerium-substituted YIG films. J. Magn. Magn. Mater. 220, 183–194 (2000)

    Article  ADS  Google Scholar 

  12. M. Tze-Chern, C. Jyh-Chen, Influence of the addition of CeO2 on the microstructure and the magnetic properties of yttrium iron garnet ceramic. J. Magn. Magn. Mater. 302, 74–81 (2006)

    Article  ADS  Google Scholar 

  13. A. Ishikawa et al., Optical and magnetic microstructures in YIG ferrite fabricated by femtosecond laser. J. Laser Micro/Nanoeng. 10, 48–52 (2015)

    Article  Google Scholar 

  14. Y.-M. Kang et al., Magnetic properties of YIG (Y3Fe5O12 thin films prepared by the post annealing of amorphous films deposited by rf-magnetron sputtering. J. Appl. Phys. 97, 10A319 (2005)

    Google Scholar 

  15. T. Boudiar et al., Magneto-optical properties of yttrium iron garnet (YIG) thin films elaborated by radio frequency sputtering. J. Magn. Magn. Mater. 284, 77–85 (2004)

    Article  ADS  Google Scholar 

  16. X. Zhou, F. Lin, X. Ma, W. Shi, Fabrication and magnetic properties of Ce1Y2Fe5O12 thin films on GGG and SiO2/Si substrates. J. Magn. Magn. Mater. 320, 1817–1821 (2008)

    Article  ADS  Google Scholar 

  17. B.J.H. Stadler, A. Gopinath, Magneto-optical garnet films made by reactive sputtering. IEEE Trans. Magn. 36, 3957–3961 (2000). doi:10.1109/20.914347

    Article  ADS  Google Scholar 

  18. E. Popova et al., Structure and magnetic properties of yttrium–iron–garnet thin films prepared by laser deposition. J. Appl. Phys. 90, 1422–1428 (2001)

    Article  ADS  Google Scholar 

  19. M.C. Sekhar et al., Strong enhancement of the Faraday rotation in Ce and Bi comodified epitaxial iron garnet thin films. Appl. Phys. Lett. 94, 181913–181916 (2009)

    Article  ADS  Google Scholar 

  20. M.N. Deeter, A.H. Rose, G.W. Day, Fast, sensitive magnetic-field sensors based on the Faraday effect in YIG. Lightw. Technol. 8, 1838–1842 (1990)

    Article  Google Scholar 

  21. H.J. Kim et al., Ce-substituted YIG films grown by pulsed laser deposition for magneto-optic waveguide devices. IEEE Trans. Magn. 35, 3163–3165 (1999)

    Article  ADS  Google Scholar 

  22. G.J. Diercks Jr, S. Samuelson, Magneto-optical properties of Y3−xy Ce x La y Fe5O12. IEEE Trans. Magn. 31, 3328–3330 (1995)

    Article  ADS  Google Scholar 

  23. S. Higuchi, Y. Furukawa, S. Takekawa, O. Kamada, K. Kitamura, Magneto-optical properties of cerium-substituted yttrium iron garnet single crystals grown by traveling solvent floating zone method. Jpn. J. Appl. Phys. 38, 4122 (1999)

    Article  ADS  Google Scholar 

  24. A. Sposito, S. Gregory, P. de Groot, R. Eason, Combinatorial pulsed laser deposition of doped yttrium iron garnet films on yttrium aluminium garnet. J. Appl. Phys. 115, 053102 (2014)

    Article  ADS  Google Scholar 

  25. W. Wan Ali, H. Jaafar, M. Ain, N. Abdullah, Z. Ahmad, Enhancement of YIG bandwidth efficiency through Ce-doping for dielectric resonator antenna (DRA) applications. J. Mater. Sci. Mater. Electron. 26, 504–514 (2015). doi:10.1007/s10854-014-2428-7

    Article  Google Scholar 

  26. M.B. Park, N.H. Cho, Structural and magnetic characteristics of yttrium iron garnet (YIG, Ce: YIG) films prepared by RF magnetron sputter techniques. J. Magn. Magn. Mater. 231, 253–264 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Office of Graduate Studies of the University of Isfahan for their supports. S. M. Shahrokhvand thanks the Iranian Nanotechnology Initiative Council for their supports too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Shahrokhvand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahrokhvand, S.M., Mozaffari, M., Rozatian, A.S.H. et al. Effect of cerium substitution on microstructure and Faraday rotation of Ce x Y3−x Fe5O12 thin films. Appl. Phys. A 122, 24 (2016). https://doi.org/10.1007/s00339-015-9539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9539-8

Keywords

Navigation