Skip to main content
Log in

ZnO/Au-based surface plasmon resonance for CO2 gas sensing application

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We fabricate surface plasmon resonance (SPR) device using a modified ZnO/Au-Kretschmann configuration to investigate the possibility of using ZnO for CO2 gas sensing at room temperature. Here, nanostructured ZnO/Au layer was deposited on the flat surface of the prism and then gas chamber was placed on the ZnO/Au surface to observe the gas response. The ZnO structures were characterized by X-ray diffraction, scanning electron microscope, and energy dispersive spectroscopy. We found that ZnO structures have two types of nanostructures, i.e., individual nanorods and flower-like structures, which have hexagonal crystal structure. The ZnO nanorod has a diameter ranged from 200 to 300 nm and length ranged from 3 to 5 μm. The effect of gas response is demonstrated by a shift of SPR spectra and a change in light reflectance. It is found that the adsorption of gas molecules on the ZnO nanorods produces the shift of SPR angle to the lower light incident angle. A consistent sensing behavior over repetitive circles is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Dostálek, J. Ladd, S. Jiang, J. Homola, SPR biosensors for detection of biological and chemical analytes, in Springer Series on Chemical Sensors and Biosensors, ed. by O.S. Wolfbeis (Springer, Berlin, 2006), pp. 177–190

    Google Scholar 

  2. R.P.H. Kooyman, Physics of surface plasmon resonance, in Surface Plasmon Resonance, ed. by R.B.M. Schasfoort, A.J. Tudos (RSC Publishing, Cambridge, 2008), pp. 15–34

    Chapter  Google Scholar 

  3. A.K. Sharma, B.D. Gupta, On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. Appl. Phys. 101(9), 093111_1–093111_6 (2007)

    Google Scholar 

  4. K.J. Krane, H. Raether, Measurement of surface plasmon dispersion in aluminum and indium. Phys. Rev. Lett. 37, 1355–1357 (1976)

    Article  ADS  Google Scholar 

  5. P. Tobiska, O. Hugon, A. Trouillet, H. Gagnaire, An integrated optic hydrogen sensor based on SPR on palladium. Sens. Actuators B Chem. 74, 168–172 (2001)

    Article  Google Scholar 

  6. A. Abdelghani, J.M. Chovelon, N. Jaffrezic-Renault, C. Ronot-Trioli, C. Veillas, H. Gagnaire, Surface plasmon resonance fibre-optic sensor for gas detection. Sens. Actuators B Chem. 39, 407–410 (1997)

    Article  Google Scholar 

  7. M.G. Manera, G. Leo, M.L. Curri, P.D. Cozzoli, R. Rella, P. Siciliano, A. Agostiano, L. Vasanelli, Investigation on alcohol vapours/TiO2 nanocrystal thin films interaction by SPR technique for sensing application. Sens. Actuators B Chem. 100(1–2), 75–80 (2004)

    Article  Google Scholar 

  8. D. Yang, H.H. Lu, B. Chen, C.W. Lin, Surface plasmon resonance of SnO2/Au Bi-layer films for gas sensing applications. Sens. Actuators B Chem. 145(2), 832–838 (2010)

    Article  Google Scholar 

  9. R. Tabassum, S.K. Mishraa, B.D. Gupta, Surface plasmon resonance-based fiber optic hydrogen sulphide gas sensor utilizing Cu–ZnO thin films. Phys. Chem. Chem. Phys. 15, 11868–11874 (2013)

    Article  Google Scholar 

  10. R. Tabassum, B.D. Gupta, Surface plasmon resonance based fiber optic detection of chlorine utilizing polyvinylpyrolidone supported zinc oxide thin films. Analyst 140, 1863–1870 (2015)

    Article  ADS  Google Scholar 

  11. K. Watanabe, K. Matsumoto, T. Ohgaki, I. Sakaguchi, N. Ohashi, S. Hishita, H. Haneda, Development of ZnO-based surface plasmon resonance gas sensor and analysis of UV irradiation effect on NO2 desorption from ZnO thin films. J. Ceram. Soc. Jpn. 118, 193–196 (2010)

    Article  Google Scholar 

  12. V.P. Dinesh, P. Biji, A.K. Prasad, A.K. Tyagi, Enhanced ammonia sensing properties using Au decorated ZnO nanorods, in Proceeding of IEEE Sensors 2013, vol. 1(4), pp. 1–4 (2013)

  13. M.G. Manera, J. Spadavecchia, D. Buso, C. de Julián Fernández, G. Mattei, A. Martucci, P. Mulvaney, J. Pérez-Juste, R. Rella, L. Vasanelli, P. Mazzoldi, Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films. Sens. Actuators B Chem. 132, 107–115 (2008)

    Article  Google Scholar 

  14. H. Li, X. Mu, Y. Yang, A.J. Mason, Low power multimode electrochemical gas sensor array system for wearable health and safety monitoring. IEEE Sens. J. 14(10), 3391–3399 (2014)

    Article  Google Scholar 

  15. W.Y. Fenga, N.F. Chiub, H.H. Lub, H.C. Shihc, D. Yang, Surface plasmon resonance biochip based on ZnO thin film for nitric oxide sensing, in 30th Annual International IEEE EMBS Conference, Canada, pp. 5757–5760 (2008)

  16. G.J. Ashwell, M.P.S. Roberts, Highly selective surface plasmon resonance sensor for NO2. Electron. Lett. 33(22), 2089–2091 (1996)

    Article  Google Scholar 

  17. P.S. Vukusic, J.R. Sambles, Cobalt phthalocyanine as a basis for the optical sensing of nitrogen dioxide using surface plasmon resonance. Thin Solid Films 221, 311–317 (1992)

    Article  ADS  Google Scholar 

  18. K. Kurihara, K. Nakamura, K. Suzuki, Asymmetric SPR sensor response curve-fitting equation for the accurate determination of SPR resonance angle. Sens. Actuators B Chem. 86, 49–57 (2002)

    Article  Google Scholar 

  19. L. Leutz, A. Suzuki, Nonimaging Fresnel Lenses: Design and Performance of Solar Concentration (Springer, Heidelberg, 2001), pp. 46–47

    Book  Google Scholar 

  20. K.M. McPeak, S.V. Jayanti, S.J.P. Kress, S. Iotti, A. Rossinelli, B.J. Norris, Plasmonic films can easily be better: rules and recipes. ACS Photonics 2, 326–333 (2015)

    Article  Google Scholar 

  21. M.A. Bodea, G. Sbarcea, G.V. Naik, A. Boltasseva, T.A. Klar, J.D. Pedarnig, Negative permittivity of ZnO thin films prepared from aluminum and gallium doped ceramics via pulsed-laser deposition. Appl. Phys. A 110(2), 929_1–929_6 (2013)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Ms. Lia Aprilia, Ms. Putri Amalia Pondoh, Ms. Sonya Retno Mange, and Mr. Mochammad Aldi Mauludin for their technical support in the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratno Nuryadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nuryadi, R., Mayasari, R.D. ZnO/Au-based surface plasmon resonance for CO2 gas sensing application. Appl. Phys. A 122, 33 (2016). https://doi.org/10.1007/s00339-015-9536-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9536-y

Keywords

Navigation