Skip to main content
Log in

Study of XANES near Ta-L edges in LiTaO3 through thermal wave, fluorescence and first principles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

X-ray absorption near-edge spectra (XANES) of Ta-L2 and L3 edges in LiTaO3 (LTO) crystals are measured by measuring amplitude and phase of thermal waves generated within the LTO crystal, using pyroelectric property of LTO. Thus, LTO crystal is used both as a sample as well as sensor material. XANES of Ta-L edges in LTO are also measured by fluorescence. XANES spectra from fluorescence and first-principles simulations agree excellently well. The onset of the pre-edge region of XANES, measured by both techniques, extends below the edge by about 50 eV. This pre-edge onset of absorption is explained in terms of the core-hole lifetime effect on near-edge absorption using density functional theory. However, detailed nature of XANES peaks near Ta-L3 and Ta-L2 absorption edges, measured by thermal waves and fluorescence, differ. Possible origins of these differences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Rothwarf, J. Appl. Phys. 44, 752–756 (1973)

    Article  ADS  Google Scholar 

  2. W.T. Elam, X ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES, in Chemical Analysis, 92, ed. by D.C. Koningsberger, R. Prins (John Wiley and Sons, New York, 1988)

  3. C.S. Schnohr, M.C. Ridgway, X-Ray Absorption Spectroscopy of Semiconductors. Springer (2015) http://www.springer.com/978-3-662-44361-3

  4. T. Masujima, N. Ikuta, T. Toyoda, T. Hinoue, H. Shiwaku, H. Ohno, A. Iida, M. Ando, J. De Physique IV 04(C7), C7-353–C7-356 (1994)

    Google Scholar 

  5. M. Reichling, T. Masujima, H. Shwaku, H. Kawata, M. Ando, E. Matthias, Appl. Phys. A 49, 707–710 (1989)

    Article  ADS  Google Scholar 

  6. T. Toyoda, T. Masujima, H. Shiwaku, A. Iida, M. Ando, Jpn. J. Appl. Phys. 29, L1723–L1726 (1990)

    Article  ADS  Google Scholar 

  7. M.E. Garcia, G.M. Pastor, K.H. Bennemann, Phys. Rev. Lett. 61, 121–124 (1988)

    Article  ADS  Google Scholar 

  8. Y. Fang, A.N. Vasil’ev, V.V. Mikhailin, Appl. Phys. A 60, 333–341 (1995)

    Article  ADS  Google Scholar 

  9. A. Mandelis, W. Lo, R.E. Wagner, Appl. Phys. A 44, 123–130 (1987)

    Article  ADS  Google Scholar 

  10. T. Ikari, K. Miyazaki, A. Fukuyama, H. Yokoyama, K. Maeda, K. Futagami, J. Appl. Phys. 71, 2408–2413 (1992)

    Article  ADS  Google Scholar 

  11. Shailendra Kumar, Appl. Phys. Lett. 69, 3294–3296 (1996)

    Google Scholar 

  12. C.L. Wang, J.M. Auerbach, J.D. Eckels, J.C. Koo, H.N. Kornblum, D.F. Price, J.A. Smith, S.C. Stotlar, Rev. Sci. Instrum. 57, 2177–2178 (1986)

    Article  ADS  Google Scholar 

  13. P.S.P. Wei, F.W. Lytle, Phys. Rev. B 19, 679–685 (1979)

    Article  ADS  Google Scholar 

  14. J.V. Acrivos, S.S.P. Parkin, J. Code, J. Reynolds, K. Hathaway, H. Kurasaki, E.A. Marseglia, J. Phys. C Solid State Phys. 14, L349–L357 (1981)

    Article  ADS  Google Scholar 

  15. Y. Yoneda, K. Yoshii, C. Suzuki, Trans. Mater. Res. Soc. Jpn. 37(4), 579–582 (2012)

    Article  Google Scholar 

  16. R.A. Mayanovic, H. Yan, A.J. Anderson, G. Solferino, J. Non Cryst. Solids 368, 71–78 (2013)

    Article  ADS  Google Scholar 

  17. S. Paek, Y. Kim, J. Alloys Compd. 587, 251–254 (2014)

    Article  Google Scholar 

  18. M.K. Tiwari, P. Gupta, A.K. Sinha, S.R. Kane, A.K. Singh, S.R. Garg, C.K. Garg, G.S. Lodha, S.K. Deb, J. Synchrotron Radiat. 20, 386–389 (2013)

    Article  Google Scholar 

  19. A. Mandelis, M.M. Zver, J. Appl. Phys. 57, 4421–4430 (1985)

    Article  ADS  Google Scholar 

  20. A. Thompson (ed.) X-Ray Data Booklet (Lawrence Berkeley National Laboratory, University of California, CA)

  21. S. Satpathy, S. Kumar, B.N. Raja Sekhar, V.G. Sathe, P.K. Gupta, J. Appl. Phys. 104, 0335429 (2008)

    Google Scholar 

  22. I. Bhaumik, S. Kumar, S. Ganeshmoorthy, R. Bhatt, A.K. Karnal, B.N. Raja Sekhar, Solid State Commun. 151, 1869–1872 (2011)

    ADS  Google Scholar 

  23. T.A. Puntambekar, RRCAT News Lett. 26(1), 4 (2013)

    Google Scholar 

  24. S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, Zeitschrift fuer Kristallographie 220(5–6), 567–570 (2005)

    ADS  Google Scholar 

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  26. Shang-Peng Gao, Chris J. Pickard, Mike C. Payne, Jing Zhu, Jun Yuan, Phys. Rev. B 77, 115122 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors acknowledge help of Dr A. K. Sinha in discussion, Mr. Gangadhar Das, and Mr. Ajay Khooha, during the experiment. Help and interest of Dr S. K. Deb and Dr G. S. Lodha and Dr P. A. Naik are acknowledged in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Kane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kane, S.R., Kumar, S., Ghosh, H. et al. Study of XANES near Ta-L edges in LiTaO3 through thermal wave, fluorescence and first principles. Appl. Phys. A 122, 11 (2016). https://doi.org/10.1007/s00339-015-9529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9529-x

Keywords

Navigation