Skip to main content
Log in

A coplanar wideband antenna based on metamaterial refractive surface

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we proceed by presenting a wideband coplanar antenna which can be used in various applications because of its performances such as broad band, small size and low-cost design. Then, we carried out many metamaterial refractive surface (MRS) simulations in order to optimize the antenna performances. Finally, a comparative study between different configurations of the proposed antenna integrated with MRS is presented. The proposed prototype covers the frequency band from 1.6 to 1.8 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W. Kim, S. Hong, H. Park, J. Choi, Planar monopole antenna with wide impedance bandwidth for mobile handset application. Microw. Opt. Technol. Lett. 49(4), 779–781 (2007)

    Article  Google Scholar 

  2. M. Ammann, Z.N. Chen, A wide-band shorted planar monopole with bevel, (2003)

  3. A.A. Eldek, A.Z. Elsherbeni, C.E. Smith, K.-F. Lee, Wideband rectangular slot antenna for personal wireless communication systems. Antennas Propag. Mag. IEEE 44(5), 146–155 (2002)

    Article  ADS  Google Scholar 

  4. D.R. Smith, W.J. Padilla, D. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184 (2000)

    Article  ADS  Google Scholar 

  5. J. Evans, M. Ammann, Reduced-size reconfigurable tri-band printed antenna with cpw tapered-feed and shorting post. Microw. Opt. Technol. Lett. 48(9), 1850–1853 (2006)

    Article  Google Scholar 

  6. W.-C. Liu, C.-M. Wu, CPW-FED shorted F-shaped monopole antenna for 5.8-GHz RFID application. Microw. Opt. Technol. Lett. 48(3), 573–575 (2006)

    Article  ADS  Google Scholar 

  7. L. Chesnel, Étude de quelques problèmes de transmission avec changement de signe. application aux métamatériaux. Ph.D. dissertation, Ecole Polytechnique X (2012)

  8. T. Itoh et al., Transmission line approach of left-handed (lh) materials (2002)

  9. A. Nicolson, G. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19(4), 377–382 (1970)

    Article  Google Scholar 

  10. R.W. Ziolkowski, Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propag. 51(7), 1516–1529 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. H. Jiang, Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations. Appl. Opt. 37(22), 5337–5343 (1998)

    Article  ADS  Google Scholar 

  12. M. Houdart, Coplanar lines: Application to broadband microwave integrated circuits, in Microwave Conference, 6th European. IEEE 1976, 49–53 (1976)

  13. N. Patel et al., Rectangular microstrip patch antenna for wireless communications at 6.5 GHz. Int. J. Sci. Eng. Res. 5, 990–993 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Salhi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salhi, R., Labidi, M. & Choubani, F. A coplanar wideband antenna based on metamaterial refractive surface. Appl. Phys. A 122, 12 (2016). https://doi.org/10.1007/s00339-015-9524-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9524-2

Keywords

Navigation