Skip to main content
Log in

Electronic heat capacity and thermal conductivity of armchair graphene nanoribbons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using the Green’s function formalism and tight-binding Hamiltonian model in the band representation, for various widths of armchair graphene nanoribbons, the band structure, density of states, and temperature dependence of the heat capacity and thermal conductivity are considered for the electronic contribution per single width of the ribbons. Observed for various widths are similar peaks of Schottky anomaly, but with a tiny departure toward higher temperatures and a slight decline (rise) before (after) it for wider ribbons. Furthermore, the thermal conductivity decreases as the width of the ribbon gets larger, owing to the overlap between the nonhybridized \(p_{z}\) orbitals which provide literal paths across the ribbon to distract a part of the electron’s drift from the axial direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  2. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  3. N.M.R. Peres, A.H.C. Neto, F. Guinea, Phys. Rev. B 73, 195411 (2006)

    Article  ADS  Google Scholar 

  4. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  5. K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Phys. Rev. B 59, 8271 (1999)

    Article  ADS  Google Scholar 

  6. L. Brey, H.A. Fertig, Phys. Rev. B 73, 235411 (2006)

    Article  ADS  Google Scholar 

  7. S.M.M. Dubois, Z. Zanolli, X. Declerck, J.C. Charlier, Eur. Phys. J. B 72, 1 (2009)

    Article  ADS  Google Scholar 

  8. B. Xu, J. Yin, Y.D. Xia, X.G. Wan, K. Jiang, Z.G. Liu, Appl. Phys. Lett. 96, 163102 (2010)

    Article  ADS  Google Scholar 

  9. K. Sasaki, S. Murakami, R. Saito, J. Phys. Soc. Jpn. 75, 074713 (2006)

    Article  ADS  Google Scholar 

  10. F. Ma, H.B. Zheng, Y.J. Sun, D. Yang, K.W. Xu, P.K. Chu, Appl. Phys. Lett. 101, 111904 (2012)

    Article  ADS  Google Scholar 

  11. L. Lian, F. Ma, H. Zheng, D. Yang, K. Xu, Integer Ferroelectr. 144, 101 (2013)

    Article  Google Scholar 

  12. M. Xia, Y. Songc, S. Zhang, Phys. Lett. A 375, 3726 (2011)

    Article  ADS  Google Scholar 

  13. A.A. Balandin, Nat. Mater. 10, 569 (2011)

    Article  ADS  Google Scholar 

  14. H. Im, J. Kim, Carbon 50, 5429 (2012)

    Article  Google Scholar 

  15. X. Li, J. Chen, C. Yu, G. Zhang, Appl. Phys. Lett. 103, 013111 (2013)

    Article  ADS  Google Scholar 

  16. Z. Guo, D. Zhang, X.G. Gonga, Appl. Phys. Lett. 95, 163103 (2009)

    Article  ADS  Google Scholar 

  17. S.J. Mahdizadeh, E.K. Goharshadi, J. Nanopart. Res. 16, 2553 (2014)

    Article  Google Scholar 

  18. D. Liu, P. Yang, X. Yuan, J. Guo, N. Liao, Phys. Lett. A 379, 810 (2015)

    Article  Google Scholar 

  19. H. Yang, Y. Tang, Y. Liu, X. Yu, P. Yang, React. Funct. Polym. 79, 29 (2014)

    Article  Google Scholar 

  20. C.X. Yu, G. Zhang, Appl. Phys. Lett. 113, 044306 (2013)

    Google Scholar 

  21. W.R. Zhong, Z.C. Xu, D.Q. Zheng, B.Q. Ai, Appl. Phys. Lett. 104, 081914 (2014)

    Article  ADS  Google Scholar 

  22. J. Hu, X. Ruan, Y.P. Chen, Nano Lett. 9, 2730 (2009)

    Article  ADS  Google Scholar 

  23. Y. Sonvanea, S.K. Guptab, P. Ravala, I. Lukacevicc, P.B. Thakor, Chem. Phys. Lett. 634, 16 (2015)

    Article  Google Scholar 

  24. H. Cao, Z.X. Guo, H. Xiang, X.G. Gonga, Phys. Lett. A 376, 525 (2012)

    Article  ADS  Google Scholar 

  25. H. Mousavi, J. Khodadadi, Int. J. Thermophys. 36, 2638 (2015)

    Article  ADS  Google Scholar 

  26. K. Wakabayashi, K. Sasaki, T. Nakanishi, T. Enoki, Sci. Technol. Adv. Mater. 11, 054504 (2010)

    Article  Google Scholar 

  27. E.N. Economou, Green’s Functions in Quantum Physics, 3rd edn. (Springer, Heidelberg, 2006)

    Book  Google Scholar 

  28. G. Grosso, G.P. Parravicini, Solid State Physics, 2nd edn. (Academic Press, New York, 2014)

    Google Scholar 

  29. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2004)

    Google Scholar 

  30. H. Mousavi, J. Khodadadi, Phys. E 50, 11 (2013)

    Article  Google Scholar 

  31. G.D. Mahan, Many Particle Physics, 3rd edn. (Kluwer Academic/Plenum Publishers, New York, 2000)

    Book  Google Scholar 

  32. I. Paul, G. Kotliar, Phys. Rev. B 67, 115131 (2003)

    Article  ADS  Google Scholar 

  33. A.V. Joura, D.O. Demchenko, J.K. Freericks, Phys. Rev. B 69, 165105 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamze Mousavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, H., Khodadadi, J. Electronic heat capacity and thermal conductivity of armchair graphene nanoribbons. Appl. Phys. A 122, 14 (2016). https://doi.org/10.1007/s00339-015-9517-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-015-9517-1

Navigation