Skip to main content
Log in

The structural behavior of SrTiO3 under 400 keV Ne2+ ion irradiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural behavior of polycrystalline perovskite SrTiO3 under 400 keV Ne2+ ion irradiation at both liquid nitrogen (LN2) and room temperature (RT) has been investigated. The grazing incident X-ray diffraction technique was applied to examine the radiation-induced structural evolution. The radiation behavior of SrTiO3 depends strongly on the irradiation temperature. At LN2 temperature, the samples exhibit significant lattice swelling and amorphization, whereas at RT, the lattice swelling is much less conspicuous and no amorphization is detected even at the highest irradiation dose of 5.0 dpa. Nevertheless, Ne2+ irradiation induces peak splitting in XRD patterns at both temperatures. Furthermore, first-principle calculations have been performed with VASP, involving possible defect types, to identify which defect is responsible for the radiation effect of SrTiO3. The results reveal that the oxygen vacancy defect is the most likely to contribute to the radiation behavior of SrTiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Muta, K. Kurosaki, S. Yamanaka, J. Alloys Compd. 350(1–2), 292–295 (2003)

    Article  Google Scholar 

  2. C.S. Koonce et al., Phys. Rev. 163(2), 380–390 (1967)

    Article  ADS  Google Scholar 

  3. J.G. Bednorz, K.A. Müller, Phys. Rev. Lett. 52(25), 2289–2292 (1984)

    Article  ADS  Google Scholar 

  4. H.P.R. Frederikse, W.R. Thurber, W.R. Hosler, Phys. Rev. 134(2A), A442–A445 (1964)

    Article  ADS  Google Scholar 

  5. W.J. Weber et al., MRS Bull. 34(01), 46–53 (2009)

    Article  Google Scholar 

  6. L.W. Hobbs et al., J. Nucl. Mater. 216, 291–321 (1994)

    Article  ADS  Google Scholar 

  7. L. Thomé et al., Adv. Mater. Sci. Eng. 2012, 13 (2012)

    Article  Google Scholar 

  8. A. Meldrum, L. Boatner, R. Ewing, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 141(1), 347–352 (1998)

    Article  ADS  Google Scholar 

  9. A. Meldrum et al., J. Nucl. Mater. 300(2), 242–254 (2002)

    Article  ADS  Google Scholar 

  10. C. Sabathier, J. Chaumont, J.C. Krupa, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 196(3–4), 308–314 (2002)

    Article  ADS  Google Scholar 

  11. Y. Zhang et al., Phys. Rev. B 72(9), 094112 (2005)

    Article  ADS  Google Scholar 

  12. Y. Zhang et al., J. Appl. Phys. 100(11), 113533 (2006)

    Article  ADS  Google Scholar 

  13. K. Oyoshi, S. Hishita, H. Haneda, J. Appl. Phys. 87(7), 3450–3456 (2000)

    Article  ADS  Google Scholar 

  14. S. Nakao et al., Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 191(1–4), 226–229 (2002)

    Article  ADS  Google Scholar 

  15. K. Daisuke et al., Jpn. J. Appl. Phys. 46(5L), L471 (2007)

    Google Scholar 

  16. J. Albrecht et al., Surf. Sci. 547(1–2), L847–L852 (2003)

    Article  ADS  Google Scholar 

  17. C.W. White et al., Mater. Sci. Rep. 4(2), 41–146 (1989)

    Article  Google Scholar 

  18. J. Rankin, B.W. Sheldon, L.A. Boatner, J. Mater. Res. 9(12), 3113–3120 (1994)

    Article  ADS  Google Scholar 

  19. M.J. Zhuo et al., J. Nucl. Mater. 442(1–3), 143–147 (2013)

    Article  ADS  Google Scholar 

  20. J.F. Ziegler, J.P. Biersack, in Treatise on Heavy-Ion Science, vol. 6 (Springer, New York, 1895). pp. 93–129. doi:10.1007/978-1-4615-8103-1_3

  21. R. Cooper et al., J. Nucl. Mater. 289(1), 199–203 (2001)

    Article  ADS  Google Scholar 

  22. K.L. Smith et al., J. Nucl. Mater. 321(1), 19–28 (2003)

    Article  ADS  Google Scholar 

  23. K.L. Smith, N.J. Zaluzec, J. Nucl. Mater. 336(2), 261–266 (2005)

    Article  ADS  Google Scholar 

  24. J.A. Valdez, Z. Chi, K.E. Sickafus, J. Nucl. Mater. 381(3), 259–266 (2008)

    Article  ADS  Google Scholar 

  25. G. Kresse, J. Furthmüller, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  26. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6(1), 15–50 (1996)

    Article  Google Scholar 

  27. P.E. Blöchl, Phys. Rev. B 50(24), 17953 (1994)

    Article  ADS  Google Scholar 

  28. G. Kresse, D. Joubert, Phys. Rev. B 59(3), 1758 (1999)

    Article  ADS  Google Scholar 

  29. J.P. Perdew et al., Phys. Rev. B 46(11), 6671–6687 (1992)

    Article  ADS  Google Scholar 

  30. J.A. White, D.M. Bird, Phys. Rev. B 50(7), 4954–4957 (1994)

    Article  ADS  Google Scholar 

  31. Y.H. Li et al., Chin. Phys. Lett. 28(6), 066102 (2011)

    Article  ADS  Google Scholar 

  32. J. Hutton, R.J. Nelmes, H.J. Scheel, Acta Crystallogr. Sect. A 37(6), 916–920 (1981)

    Article  ADS  Google Scholar 

  33. R.J. Nelmes, G.M. Meyer, J. Hutton, Ferroelectrics 21(1), 461–462 (1978)

    Article  Google Scholar 

  34. Y. Li et al., Phys. Rev. Lett. 108(19), 195504 (2012)

    Article  ADS  Google Scholar 

  35. W. Jiang, R.M. Van Ginhoven, D.M. Strachan. Chemical and Charge Imbalance Induced by Radionuclide Decay: Effects on Waste Form Structure (Pacific Northwest National Laboratory Richland, WA, 2011). URL: http://www.pnnl.gov/main/publications/external/technical_reports/PNNL-20312.pdf

  36. T. Tanaka et al., Phys. Rev. B 68(20), 205213 (2003)

    Article  ADS  Google Scholar 

  37. B. Lee et al., Phys. Rev. Lett. 98(11), 115503 (2007)

    Article  ADS  Google Scholar 

  38. D. Kan et al., Nat. Mater. 4(11), 816–819 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  39. K. Potzger et al., J. Magn. Magn. Mater. 323(11), 1551–1562 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Natural Science Foundation of China (11475076, 11175076 and 11135002). Ion Beam Materials Laboratory was partially supported by the Center for Integrated Nanotechnologies, a DOE nanoscience user facility jointly operated by Los Alamos and Sandia National Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, X., Liu, C.G., Yang, D.Y. et al. The structural behavior of SrTiO3 under 400 keV Ne2+ ion irradiation. Appl. Phys. A 121, 1211–1217 (2015). https://doi.org/10.1007/s00339-015-9492-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9492-6

Keywords

Navigation