Skip to main content
Log in

Laser surface graphitization to control friction of diamond-like carbon coatings

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To study the role of laser surface graphitization in the friction behavior of laser-patterned diamond-like carbon (DLC) films, we apply the scanning probe microscopy (SPM) in the lateral force mode (LFM) which allows to obtain simultaneously the lateral force and topography images and to determine local friction levels in laser-irradiated and original surface areas. Based on this approach in the paper, we report on (1) laser surface microstructuring of hydrogenated a-C:H and hydrogen-free ta-C films in the regime of surface graphitization using UV laser pulses of 20-ns duration and (2) correlation between the structure and friction properties of the laser-patterned DLC surface on micro/nanoscale using SPM/LFM technique. The SPM/LFM data obtained for the surface relief gratings of graphitized microstructures have evidenced lower friction forces in the laser-graphitized regions. For the hydrogenated DLC films, the reversible frictional behavior of the laser-graphitized micropatterns is found to take place during LFM imaging at different temperatures (20 and 120 °C) in ambient air. It is revealed that the lateral force distribution in the laser-graphitized areas is shifted to higher friction levels (relative to that of the unirradiated surface) at temperature 120 °C and returned back to the lower friction during the sample cooling to 20 °C, thus confirming an influence of adsorbed water layers on the nanofriction properties of laser-graphitized micropatterns on the film surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. A. Erdemir, C. Donnet, J. Phys. D Appl. Phys. 39, R311–R327 (2006)

    Article  Google Scholar 

  2. A.A. Voevodin, J.E. Bultman, J.S. Zabinski, Surf. Coat. Technol. 107, 12 (1998)

    Article  Google Scholar 

  3. T.V. Kononenko, S.V. Garnov, S.M. Pimenov, V.I. Konov, V. Romano, B. Borsos, H.P. Weber, Appl. Phys. A 71, 627 (2000)

    Article  ADS  Google Scholar 

  4. G. Dumitru, V. Romano, H.P. Weber, S. Pimenov, T. Kononenko, J. Hermann, S. Bruneau, Y. Gerbig, M. Shupegin, Diam. Relat. Mater. 12, 1034 (2003)

    Article  ADS  Google Scholar 

  5. T.V. Kononenko, S.M. Pimenov, V.V. Kononenko, E.V. Zavedeev, V.I. Konov, G. Dumitru, V. Romano, Appl. Phys. A 79, 543 (2004)

    Article  ADS  Google Scholar 

  6. T.V. Kononenko, V.V. Kononenko, S.M. Pimenov, E.V. Zavedeev, V.I. Konov, V. Romano, G. Dumitru, Diam. Relat. Mater. 14, 1368 (2005)

    Article  ADS  Google Scholar 

  7. M.S. Komlenok, S.M. Pimenov, V.V. Kononenko, V.I. Konov, H.-J. Scheibe, J. Nano Microsyst. Tech. 3, 48 (2008). (in Russian)

    Google Scholar 

  8. T. Roch, V. Weihnacht, H.-J. Scheibe, A. Roch, A.F. Lasagni, Diam. Relat. Mater. 33, 20 (2013)

    Article  ADS  Google Scholar 

  9. T. Roch, F. Klein, K. Guenther, A. Roch, T. Mühl, A. Lasagni, Mater. Res. Exp. 1, 035042 (2014)

    Article  Google Scholar 

  10. T. Roch, D. Benke, S. Milles, A. Roch, T. Kunze, A. Lasagni, Diam. Relat. Mater. 55, 16 (2015)

    Article  ADS  Google Scholar 

  11. S.E. Grillo, J.E. Field, J. Phys. D Appl. Phys. 33, 595 (2000)

    Article  ADS  Google Scholar 

  12. A.R. Konicek, D.S. Grierson, A.V. Sumant, T.A. Friedmann, J.P. Sullivan, P.U.P.A. Gilbert, W.G. Sawyer, R.W. Carpick, Phys. Rev. B 85, 155448 (2012)

    Article  ADS  Google Scholar 

  13. U. Bögli, A. Blatter, A. Bächli, R. Lüthi, E. Meyer, Diam. Relat. Mater. 2, 924 (1993)

    Article  ADS  Google Scholar 

  14. S.M. Pimenov, A.A. Smolin, E.D. Obraztsova, V.I. Konov, U. Bögli, A. Blatter, M. Maillat, A. Leijala, J. Burger, H.E. Hintermann, E.N. Loubnin, Surf. Coat. Technol. 76–77, 572 (1995)

    Article  Google Scholar 

  15. A. Erdemir, M. Halter, G.R. Fenske, A. Krauss, D.M. Gruen, S.M. Pimenov, V.I. Konov, Surf. Coat. Technol. 94–95, 537 (1997)

    Article  Google Scholar 

  16. G. Meyer, N.M. Amer, Appl. Phys. Lett. 57, 2089 (1990)

    Article  ADS  Google Scholar 

  17. L. Sirghi, V. Tiron, M. Dobromir, Diam. Relat. Mater. 52, 38 (2015)

    Article  ADS  Google Scholar 

  18. H. Schulz, H.-J. Scheibe, P. Siemroth, B. Schultrich, Appl. Phys. A 78, 675 (2004)

    Article  ADS  Google Scholar 

  19. V.F. Dorfman, B.N. Pypkin, Surf. Coat. Technol. 48, 193 (1991)

    Article  Google Scholar 

  20. M.L. Shupegin, J. Ind Lab. Mater. Diagn 79, 28 (2013). (in Russian)

    Google Scholar 

  21. G. Dumitru, V. Romano, H.P. Weber, S. Pimenov, T. Kononenko, M. Sentis, J. Hermann, S. Bruneau, Appl. Surf. Sci. 222, 226 (2004)

    Article  ADS  Google Scholar 

  22. S.N. Magonov, M.-H. Whangbo, Surface analysis with STM and AFM. Experimental and theoretical aspects of image analysis (VCH, Weinheim, New York, Basel, Cambridge, Tokyo, 1996)

    Google Scholar 

  23. A.C. Ferrari, J. Robertson, Phys. Rev. B 61, 14095 (2000)

    Article  ADS  Google Scholar 

  24. C.G. Dunckle, I.B. Altfeder, A.A. Voevodin, J. Jones, J. Krim, P. Taborek, J. Appl. Phys. 107, 114903 (2010)

    Article  ADS  Google Scholar 

  25. H. Li, T. Xu, C. Wang, J. Chen, H. Zhou, H. Liu, J. Phys. D Appl. Phys. 38, 62 (2005)

    Article  ADS  Google Scholar 

  26. H.I. Kim, J.R. Lince, O.L. Eryilmaz, A. Erdemir, Tribol. Lett. 21, 53 (2006)

    Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Scientific Foundation under Project No. 15-12-00039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei M. Pimenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komlenok, M.S., Kononenko, V.V., Zavedeev, E.V. et al. Laser surface graphitization to control friction of diamond-like carbon coatings. Appl. Phys. A 121, 1031–1038 (2015). https://doi.org/10.1007/s00339-015-9485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9485-5

Keywords

Navigation