Skip to main content

Effects of 8-mer acidic peptide concentration on the morphology and photoluminescence of synthesized ZnO nanomaterials

Abstract

An 8-mer ZnO-binding peptide, VPGAAEHT, was identified using a M13 pVIII phage display library and employed as an additive during aqueous-based ZnO synthesis at 65 °C. Unlike most other well-studied ZnO-binding sequences which are strongly basic (pI > pH 7), the 8-mer peptide was overall acidic (pI < pH 7) in character, including only a single basic residue. The selected peptide strongly influenced ZnO nanostructure formation. Morphology and optical emission properties were found to be dependent on the concentration of peptide additive. Using lower peptide concentrations (<0.1 mM), single crystal hexagonal rods and platelets were produced, and using higher peptide concentrations (≥0.1 mM), polycrystalline layered platelets, yarn-like structures, and microspheres were assembled. Photoluminescence analysis revealed a characteristic ZnO band-edge peak, as well as sub-bandgap emission peaks. Defect-related green emission, typically associated with surface-related oxygen and zinc vacancies, was significantly reduced by the peptide additive, while blue emission, attributable to oxygen and zinc interstitials, emerged with increased peptide concentrations. Peptide-directed synthesis of ZnO materials may be useful for gas sensing and photocatalytic applications in which properly engineered morphology and defect levels have demonstrated enhanced performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. A. Kolodziejczak-Radzimska, T. Jesionowski, Materials 7, 2833–2881 (2014)

    Article  ADS  Google Scholar 

  2. M.W. Ahn, K.S. Park, J.H. Heo, J.G. Park, D.W. Kim, K.J. Choi, J.H. Lee, S.H. Hong, Appl. Phys. Lett. 93, 263103 (2008)

    Article  ADS  Google Scholar 

  3. P.S. Venkatesh, P. Dharmaraj, V. Purushothaman, V. Ramakrishnan, K. Jeganathan, Sens. Actuators B Chem. 212, 10–17 (2015)

    Article  Google Scholar 

  4. Z. Pei, L. Ding, J. Hu, S. Weng, Z. Zheng, M. Huang, P. Liu, Appl. Catal. B Environ. 142, 736–743 (2013)

    Article  Google Scholar 

  5. S.G. Kumar, K.S.R.K. Rao, RSC Adv. 5, 3306–3351 (2015)

    Article  Google Scholar 

  6. Y.C. Liao, C.S. Xie, Y. Liu, Q.W. Huang, J. Alloys Compd. 550, 190–197 (2013)

    Article  Google Scholar 

  7. H. Bai, F. Xu, L. Anjia, H. Matsui, Soft Matter 5, 966–969 (2009)

    Article  ADS  Google Scholar 

  8. Y. Wang, X. Liao, Z. Huang, G. Yin, J. Gu, Y. Yao, Colloid Surf. A 372, 165–171 (2010)

    Article  Google Scholar 

  9. M. Umetsu, M. Mizuta, K. Tsumoto, S. Ohara, S. Takami, H. Watanabe, I. Kumagai, T. Adschiri, Adv. Mater. 17, 2571–2575 (2005)

    Article  Google Scholar 

  10. Z. Wei, Y. Maeda, H. Matsui, Angew. Chem. Int. Ed. 50, 10585–10588 (2011)

    Article  Google Scholar 

  11. M.M. Tomczak, M.K. Gupta, L.F. Drummy, S.M. Rozenzhak, R.R. Nalk, Acta Biomater. 5, 876–882 (2009)

    Article  Google Scholar 

  12. L. Anjia, Z. Wei, H. Matsui, RSC Adv. 2, 5516–5519 (2012)

    Article  Google Scholar 

  13. P. Gerstel, R.C. Hoffmann, P. Lipowsky, L.P.H. Jeurgens, J. Bill, F. Aldinger, Chem. Mater. 18, 179–186 (2006)

    Article  Google Scholar 

  14. C.K. Thai, H.X. Dai, M.S.R. Sastry, M. Sarikaya, D.T. Schwartz, F. Baneyx, Biotechnol. Bioeng. 87, 129–137 (2004)

    Article  Google Scholar 

  15. D. Rothenstein, B. Claasen, B. Omiecienski, P. Lammel, J. Bill, J. Am. Chem. Soc. 134, 12547–12556 (2012)

    Article  Google Scholar 

  16. P. Golec, J. Karczewska-Golec, M. Los, G. Wegrzyn, J. Nanopart. Res. 14, 1218 (2012)

    Article  Google Scholar 

  17. M.-K. Liang, O. Deschaume, S.V. Patwardhan, C.C. Perry, J. Mater. Chem. 21, 80–89 (2011)

    Article  Google Scholar 

  18. S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, A.M. Belcher, Nature 405, 665–668 (2000)

    Article  ADS  Google Scholar 

  19. S.K. Lee, D.S. Yun, A.M. Belcher, Biomacromolecules 7, 14–17 (2006)

    Article  Google Scholar 

  20. S. Donatan, H. Yazici, H. Bermek, M. Sarikaya, C. Tamerler, M. Urgen, Mater. Sci. Eng. C Biomim. 29, 14–19 (2009)

    Article  Google Scholar 

  21. E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, J. Comput. Chem. 25, 1605–1612 (2004)

    Article  Google Scholar 

  22. H. Sawada, R.P. Wang, A.W. Sleight, J. Solid State Chem. 122, 148–150 (1996)

    Article  ADS  Google Scholar 

  23. T. Togashi, N. Yokoo, M. Umetsu, S. Ohara, T. Naka, S. Takami, H. Abe, I. Kumagai, T. Adschiri, J. Biosci. Bioeng. 111, 140–145 (2011)

    Article  Google Scholar 

  24. J. Baier, N.J. Blumenstein, J. Preusker, L.P.H. Jeurgens, U. Welzel, T.A. Do, J. Pleiss, J. Bill CrystEngComm 16, 5301–5307 (2014)

    Article  Google Scholar 

  25. Z. Huang, D. Yan, M. Yang, X. Liao, Y. Kang, G. Yin, Y. Yao, B. Hao, J. Colloid Interface Sci. 325, 356–362 (2008)

    Article  Google Scholar 

  26. M.J. Limo, R. Ramasamy, C.C. Perry, Chem. Mater. 27, 1950–1960 (2015)

    Article  Google Scholar 

  27. S.H. Kim, T.Y. Olson, J.H. Satcher Jr, T.Y.-J. Han, Microporous Mesoporous Mater. 151, 64–69 (2012)

    Article  Google Scholar 

  28. A. Barth, Prog. Biophys. Mol. Biol. 74, 141–173 (2000)

    Article  Google Scholar 

  29. S. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal, D. Jana, Prog. Mater. Sci. 54, 89–136 (2009)

    Article  Google Scholar 

  30. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, J.B. Pan, Nucl. Instrum. Methods B 199, 286–290 (2003)

    Article  ADS  Google Scholar 

  31. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561–572 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank EL Hu (Harvard) and AM Belcher (MIT) for the gift of the M13SK vector and M Isarraraz (UCR) for early biopanning contributions. This work was supported in part by the Office of Naval Research (ONR, N00014-14-1-0799) and made use of the Central Facility for Advanced Microscopy and Microanalysis (CFAMM), Analytical Chemistry Instrumentation Facility (ACIF, NSF CHE-9974924 and AFOSR F49620-98-1-0475) and the Genomics Core at the Institute for Integrative Genome Biology (IIGB) at UCR. Peptide model was created with the UCSF Chimera package which was developed by Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco (supported by NIGMS P41-GM103311).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elaine D. Haberer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1627 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moon, C.H., Tousi, M., Cheeney, J. et al. Effects of 8-mer acidic peptide concentration on the morphology and photoluminescence of synthesized ZnO nanomaterials. Appl. Phys. A 121, 757–763 (2015). https://doi.org/10.1007/s00339-015-9475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9475-7

Keywords

  • Peptide Concentration
  • HMTA
  • Basic Peptide
  • High Peptide Concentration
  • Silk Peptide