Applied Physics A

, Volume 121, Issue 4, pp 1403–1407 | Cite as

High-speed flattening of crystallized glass substrates by dressed-photon–phonon etching

  • W. Nomura
  • T. Yatsui
  • T. Kawazoe
  • N. Tate
  • M. Ohtsu
Invited Paper


Dressed-photon–phonon (DPP) etching is a non-contact flattening technology that realizes ultra-flat surfaces and has been reported to achieve an arithmetic mean surface roughness, R a, on the order of 0.1 nm in various materials, such as fused silica, plastic films, and GaN crystal. In this study, we successfully flattened the surface of a crystallized glass substrate in several seconds using laser light with a higher power density than that used in previous studies. The target substrate had an initial appearance similar to frosted glass, with an R a of 92.5 nm. We performed DPP etching under a Cl2 atmosphere using a CW laser with a wavelength of 532 nm, a power of 8 W, and a spot diameter of 0.2 mm. After 1 s of processing, we obtained a flat surface with an R a of 5.00 nm. This surface roughness equaled or surpassed that of a substrate flattened by conventional chemical mechanical polishing, with an R a of 5.77 nm. Through the detailed analysis of atomic force microscopic images, we found the DPP etching resulted in the smaller standard deviation of the height difference than CMP in the smaller lateral size than 50 nm.


Etching Rate High Power Density Chemical Mechanical Polishing Convex Structure Protrusion Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported in part by the Ministry of Economy, Trade and Industry (METI). The crystallized glass substrates used in this study were provided by Showa Denko K.K.


  1. 1.
    L.M. Cook, J. Non-Cryst. Solids 120, 152 (1990)CrossRefADSGoogle Scholar
  2. 2.
    W.C. Elmore, J. Appl. Phys. 10, 724 (1939)CrossRefADSGoogle Scholar
  3. 3.
    S.-J. Lee, Y.-H. Chen, J.-C. Hung, Int. J. Electrochem. Sci. 7, 12495 (2012)Google Scholar
  4. 4.
    S. Ilias, G. Sené, P. Möller, V. Stambouli, J. Pascallon, D. Bouchier, A. Gicquel, A. Tardieu, E. Anger, M.F. Ravet, Diam. Relat. Mater. 5, 835 (1996)CrossRefADSGoogle Scholar
  5. 5.
    F. Frost, R. Fechner, B. Ziberi, D. Flamm, A. Schindler, Thin Solid Films 459, 100 (2004)CrossRefADSGoogle Scholar
  6. 6.
    T. Yatsui, K. Hirata, W. Nomura, Y. Tabata, M. Ohtsu, Appl. Phys. B 93, 55 (2008)CrossRefADSGoogle Scholar
  7. 7.
    T. Yatsui, W. Nomura, F. Stehlin, O. Soppera, M. Naruse, M. Ohtsu, Beilstein J. Nanotechnol. 4, 875 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Ohtsu, Dressed Photons (Springer, Berlin, 2013)Google Scholar
  9. 9.
    T. Yatsui, W. Nomura, M. Naruse, M. Ohtsu, J. Phys. D 45, 475302 (2012)CrossRefADSGoogle Scholar
  10. 10.
    T. Yatsui, K. Hirata, Y. Tabata, Y. Miyake, Y. Akita, M. Yoshimoto, W. Nomura, T. Kawazoe, M. Naruse, M. Ohtsu, Appl. Phys. B 103, 527 (2011)CrossRefADSGoogle Scholar
  11. 11.
    F. Gao, J. He, E. Wu, S. Liu, D. Yu, D. Li, S. Zhang, Y. Tian, Phys. Rev. Lett. 91, 015502 (2003)CrossRefADSGoogle Scholar
  12. 12.
    J.D.B. Bradley, F. Ay, K. Wörhoff, M. Pollnau, Appl. Phys. B 89, 311 (2007)CrossRefADSGoogle Scholar
  13. 13.
    C.H. Jeong, D.W. Kim, J.W. Bae, Y.J. Sung, J.S. Kwak, Y.J. Park, G.Y. Yeom, Mater. Sci. Eng. B 93, 60 (2002)CrossRefGoogle Scholar
  14. 14.
    Y.P. Hsu, S.J. Chang, Y.K. Su, J.K. Sheu, C.H. Kuo, C.S. Chang, S.C. Shei, Opt. Mater. 27, 1171 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • W. Nomura
    • 1
    • 4
  • T. Yatsui
    • 1
    • 2
  • T. Kawazoe
    • 1
    • 3
  • N. Tate
    • 1
    • 5
  • M. Ohtsu
    • 1
    • 2
    • 3
  1. 1.Department of Electrical Engineering and Information Systems, Graduate School of EngineeringThe University of TokyoTokyoJapan
  2. 2.The International Center for Nano Electron and Photon TechnologyThe University of TokyoTokyoJapan
  3. 3.Specified Nonprofit Corporation Nanophotonics Engineering OrganizationTokyoJapan
  4. 4.Education Center for Global Leaders in Molecular Systems for DevicesKyushu UniversityFukuokaJapan
  5. 5.Faculty of Information Science and Electrical EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations